首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Complement sensitization of red blood cells (RBCs) can result in transfusion reactions and hemolytic anemias. We hypothesized that manipulating the complement system using small organic molecules might prevent RBC destruction, thereby prolonging RBC survival in patients. Using a simple, rapid, large-scale hemolytic assay, we screened a 10,000 compound library, enriched in anti-inflammatory compounds at a final concentration of 25 microM, and identified a 549Da compound (C(34)H(24)N(6)O(2)) with a symmetrical structure containing two benzimidazole rings that, as compared to a known anti-complement molecule FUT-175, was more effective in reducing hemolysis by the classical pathway and had comparable anti-hemolytic activity against the alternative pathway. Furthermore, in a xenotransfusion mouse model, treatment of mice with 1.2mg/kg of the compound significantly prolonged the survival of transfused RBCs, reducing C3 deposition, but not the deposition of control IgG or IgM, for the first hour post-transfusion. These data suggest that further studies are warranted to determine if this compound has usefulness in a transfusion setting.  相似文献   

2.
To suppress C3 fragment deposition in the classical pathway complement activation on xenogeneic membranes, decay accelerating factor (DAF) was the most effective molecule among the complement regulatory proteins (CRPs) used in the present study. C3 fragment deposition was closely related to subsequent xenogeneic cell lysis. However, other molecules were also very effective in different ways and include phosphatidylinositol (PI)-anchored short consensus repeat (SCR) 2-4 of membrane cofactor protein (MCP-PI), PI-anchored C1 esterase inhibitor (C1-INH-PI), and PI-anchored SCR8-11 of complement receptor type 1 (CR1-PI). On the other hand, regarding a strategy for downregulating C4 fragment deposition, the use of only C1-INH-PI and PI-anchored SCR1-3 of the C4b-binding protein (C4bp-PI) was found to be effective.  相似文献   

3.
Antibodies against red blood cells (RBCs) can lead to complement activation resulting in an accelerated clearance via complement receptors in the liver (extravascular hemolysis) or leading to intravascular lysis of RBCs. Alloantibodies (e.g. ABO) or autoantibodies to RBC antigens (as seen in autoimmune hemolytic anemia, AIHA) leading to complement activation are potentially harmful and can be - especially when leading to intravascular lysis - fatal1. Currently, complement activation due to (auto)-antibodies on RBCs is assessed in vitro by using the Coombs test reflecting complement deposition on RBC or by a nonquantitative hemolytic assay reflecting RBC lysis1-4. However, to assess the efficacy of complement inhibitors, it is mandatory to have quantitative techniques. Here we describe two such techniques. First, an assay to detect C3 and C4 deposition on red blood cells that is induced by antibodies in patient serum is presented. For this, FACS analysis is used with fluorescently labeled anti-C3 or anti-C4 antibodies. Next, a quantitative hemolytic assay is described. In this assay, complement-mediated hemolysis induced by patient serum is measured making use of spectrophotometric detection of the released hemoglobin. Both of these assays are very reproducible and quantitative, facilitating studies of antibody-induced complement activation.  相似文献   

4.
The extracellular domain of the complement receptor type 1 (CR1; CD35) consists entirely of 30 complement control protein repeats (CCPs). CR1 has two distinct functional sites, site 1 (CCPs 1-3) and two copies of site 2 (CCPs 8-10 and CCPs 15-17). In this report we further define the structural requirements for decay-accelerating activity (DAA) for the classical pathway (CP) C3 and C5 convertases and, using these results, generate more potent decay accelerators. Previously, we demonstrated that both sites 1 and 2, tandemly arranged, are required for efficient DAA for C5 convertases. We show that site 1 dissociates the CP C5 convertase, whereas the role of site 2 is to bind the C3b subunit. The intervening CCPs between two functional sites are required for optimal DAA, suggesting that a spatial orientation of the two sites is important. DAA for the CP C3 convertase is increased synergistically if two copies of site 1, particularly those carrying DAA-increasing mutations, are contained within one protein. DAA in such constructs may exceed that of long homologous repeat A (CCPs 1-7) by up to 58-fold. To explain this synergy, we propose a dimeric structure for the CP C3 convertase on cell surfaces. We also extended our previous studies of the amino acid requirements for DAA of site 1 and found that the CCP 1/CCP 2 junction is critical and that Phe82 may contact the C3 convertases. These observations increase our understanding of the mechanism of DAA. In addition, a more potent decay-accelerating form of CR1 was generated.  相似文献   

5.
Evolutionary relationships among members of the regulator of complement activation (RCA) gene cluster were analyzed using neighbor-joining and parsimony methods of phylogenetic tree inference. We investigated the structural and functional similarities among short consensus repeats (SCRs) of the following human proteins: the alpha chain of the C4b-binding protein (C4bpalpha), factor H (FH), factor H-related proteins (FHR-1 through FHR-4), complement receptors type 1 (CR1) and type 2 (CR2), the CR1-like protein (CR1L), membrane cofactor protein (MCP), decay accelerating factor (DAF), and the sand bass proteins, the cofactor protein (SBP1) and its homolog, the cofactor-related protein (SBCRP-1). Also included are the beta chain of the human C4b-binding protein (C4bpbeta) and the b subunit of human blood-clotting factor XIII (FXIIIb). Our results indicate that the human plasma complement regulators, FH and C4bpalpha, fall into two distinct groups on the basis of their sequence divergence. Homology among RCA proteins is in agreement with their chromosomal location, with the exception of C4bpbeta. The evolutionary relationships among individual short consensus repeats are confirmed by the exon/intron structure of the RCA members. Structural similarities among repeats of the RCA proteins correlate with their functional activities and demonstrate the importance of the N-terminal SCRs.  相似文献   

6.
The goal of this study was to identify the site(s) in CR1 that mediate the dissociation of the C3 and C5 convertases. To that end, truncated derivatives of CR1 whose extracellular part is composed of 30 tandem repeating modules, termed complement control protein repeats (CCPs), were generated. Site 1 (CCPs 1-3) alone mediated the decay acceleration of the classical and alternative pathway C3 convertases. Site 2 (CCPs 8-10 or the nearly identical CCPs 15-17) had one-fifth the activity of site 1. In contrast, for the C5 convertase, site 1 had only 0.5% of the decay accelerating activity, while site 2 had no detectable activity. Efficient C5 decay accelerating activity was detected in recombinants that carried both site 1 and site 2. The activity was reduced if the intervening repeats between site 1 and site 2 were deleted. The results indicate that, for the C5 convertases, decay accelerating activity is mediated primarily by site 1. A properly spaced site 2 has an important auxiliary role, which may involve its C3b binding capacity. Moreover, using homologous substitution mutagenesis, residues important in site 1 for dissociating activity were identified. Based on these results, we generated proteins one-fourth the size of CR1 but with enhanced decay accelerating activity for the C3 convertases.  相似文献   

7.
Vaccinia virus encodes a structural and functional homolog of human complement regulators named vaccinia virus complement control protein (VCP). This four-complement control protein domain containing secretory protein is known to inhibit complement activation by supporting the factor I-mediated inactivation of complement proteins, proteolytically cleaved form of C3 (C3b) and proteolytically cleaved form of C4 (C4b) (termed cofactor activity), and by accelerating the irreversible decay of the classical and to a limited extent of the alternative pathway C3 convertases (termed decay-accelerating activity [DAA]). In this study, we have mapped the VCP domains important for its cofactor activity and DAA by swapping its individual domains with those of human decay-accelerating factor (CD55) and membrane cofactor protein (MCP; CD46). Our data indicate the following: 1) swapping of VCP domain 2 or 3, but not 1, with homologous domains of decay-accelerating factor results in loss in its C3b and C4b cofactor activities; 2) swapping of VCP domain 1, but not 2, 3, or 4 with corresponding domains of MCP results in abrogation in its classical pathway DAA; and 3) swapping of VCP domain 1, 2, or 3, but not 4, with homologous MCP domains have marked effect on its alternative pathway DAA. These functional data together with binding studies with C3b and C4b suggest that in VCP, domains 2 and 3 provide binding surface for factor I interaction, whereas domain 1 mediates dissociation of C2a and Bb from the classical and alternative pathway C3 convertases, respectively.  相似文献   

8.
Plasmodium falciparum malaria causes 1-2 million deaths per year. Most deaths occur as a result of complications such as severe anemia and cerebral malaria (CM) (coma). Red cells of children with severe malaria-associated anemia (SMA) have acquired deficiencies in the complement regulatory proteins complement receptor 1 (CR1, CD35) and decay accelerating factor (DAF, CD55). We investigated whether these deficiencies affect the ability of erythrocytes to bind immune complexes (ICs) and regulate complement activation. We recruited 75 children with SMA (Hb < or = 6 g/dL) from the holoendemic malaria region of the Lake Victoria basin, western Kenya, and 74 age- and gender-matched uncomplicated malaria controls. In addition, we recruited 32 children with CM and 52 age- and gender-matched controls. Deficiencies in red cell CR1 and CD55 in children with SMA were accompanied by a marked decline in IC binding capacity and increased C3b deposition in vivo and ex vivo. Importantly, these changes were specific because they were not seen in red cells of children with CM or their controls. These data suggest that the declines in red cell CR1 and CD55 seen in children with SMA are of physiologic significance and may predispose erythrocytes to complement-mediated damage and phagocytosis in vivo.  相似文献   

9.
The adipokine adiponectin circulates in high concentration, and activates the classical pathway of complement by binding C1q, leading to the activation of C3 and formation of the membrane attack complex. Such behaviour is potentially pathophysiological. However, we showed adiponectin captured the complement inhibitor Factor H both as a pure protein and from human serum. Both heparin and a homologue of C3b, substrates binding to the C-terminus of Factor H, were inhibitory of the interaction, as was EDTA. Factor H bound equivalently to high and low molecular weight serum adiponectin, and to an N-terminal 16 kDa cyanogen bromide cleavage product of adiponectin. The binding of Factor H inhibited both the C3 and C5 convertases generated from complement activation by adiponectin, so reducing potentially pathophysiological consequences such as the deposition of C5b-9, while allowing opsonisation of target molecules with C3b.  相似文献   

10.
Recently it has been shown that kaposica, an immune evasion protein of Kaposi's sarcoma-associated herpesvirus, inactivates complement by acting on C3-convertases by accelerating their decay as well as by acting as a cofactor in factor I-mediated inactivation of their subunits C3b and C4b. Here, we have mapped the functional domains of kaposica. We show that SCRs 1 and 2 (SCRs 1-2) and 1-4 are essential for the classical and alternative pathway C3-convertase decay-accelerating activity (DAA), respectively, while the SCRs 2-3 are required for factor I cofactor activity (CFA) for C3b and C4b. SCR 3 and SCRs 1 and 4, however, contribute to optimal classical pathway DAA and C3b CFA, respectively. Binding data show that SCRs 1-4 and SCRs 1-2 are the smallest structural units required for measuring detectable binding to C3b and C4b, respectively. The heparin-binding site maps to SCR 1.  相似文献   

11.

Objectives

Paroxysmal nocturnal hemoglobinemia (PNH) is a rare but serious condition characterized by complement-mediated red blood cell (RBC) hemolysis and episodic thrombotic attack. It results from decay accelerating factor (CD55), and protectin (CD59), becoming attached to RBC and other cell surfaces. Absence of these protective proteins leaves such cells vulnerable to self attack at the C3 convertase and membrane attack complex (MAC) stages of complement activation. We have previously reported that aurin tricarboxylic acid (ATA) is an orally effective agent that selectively blocks complement activation at the C3 convertase stage as well as MAC formation at the C9 insertion stage.

Design and Methods

We used a CH50 assay method and western blot analysis to investigate the vulnerability to complement attack of PNH RBCs compared with normal RBCs. Zymosan was used as the activator of normal serum and PNH serum. ATA was added to the sera to determine the concentration necessary to protect the RBCs from lysis by the zymosan-activated sera.

Results

We found that erythrocytes from PNH patients on long term treatment with eculizumab were twice as vulnerable as normal erythrocytes to lysis induced by complement activated serum. Western blot data showed the presence of both C3 and C5 convertases on the PNH patient erythrocyte membranes. These data indicate persistent vulnerability of PNH erythrocytes to complement attack due to deficiencies in CD55 and CD59. ATA, when added to serum in vitro, protected PNH erythrocytes from complement attack, restoring their resistance to that of normal erythrocytes.

Conclusions

We conclude that ATA, by protecting PNH erythrocytes from their decay accelerating factor (CD55) and protectin (CD59) deficiencies, may be an effective oral treatment in this disorder.  相似文献   

12.
Inter alpha inhibitor (IαI) is an abundant serum protein consisting of three polypeptides: two heavy chains (HC1 and HC2) and bikunin, a broad-specificity Kunitz-type proteinase inhibitor. The complex is covalently held together by chondroitin sulfate but during inflammation IαI may interact with TNF-stimulated gene 6 protein (TSG-6), which supports transesterification of heavy chains to hyaluronan. Recently, IαI was shown to inhibit mouse complement in vivo and to protect from complement-mediated lung injury but the mechanism of such activity was not elucidated. Using human serum depleted from IαI, we found that IαI is not an essential human complement inhibitor as was reported for mice and that such serum has unaltered hemolytic activity. However, purified human IαI inhibited classical, lectin and alternative complement pathways in vitro when added in excess to human serum. The inhibitory activity was dependent on heavy chains but not bikunin and detected at the level of initiating molecules (MBL, properdin) in the lectin/alternative pathways or C4b in the classical pathway. Furthermore, IαI affected formation and assembly of the C1 complex and prevented assembly of the classical pathway C3-convertase. Presence and putative interactions with TSG-6 did not affect the ability of IαI to inhibit complement thus implicating IαI as a potentially important complement inhibitor once enriched onto hyaluronan moieties in the course of local inflammatory processes. In support of this, we found a correlation between IαI/HC-containing proteins and hemolytic activity of synovial fluid from patients suffering from rheumatoid arthritis.  相似文献   

13.
C1 inhibitor (C1INH), a complement regulatory protein, prevents endotoxin shock via a direct interaction of the amino-terminal domain with gram-negative bacterial lipopolysaccharide (LPS). Importantly, the cleaved, inactive C1INH still is an anti-endotoxin effector indicating the anti-endotoxin peptide that generates from the amino-terminal domain of C1INH. In this study, we first identified that a cleaved fragment within the major part of the amino-terminal domain in in vitro proteolytic analysis of C1INH had an ability to bind to LPS. We synthesized several peptides overlapping the C1INH cleaved fragment. Among these synthetic peptides, a 13-mer derivative peptide at position from 18 to 30, named N2((18-30)), exhibited the most powerful anti-endotoxin activity in vitro, enlightening that it was most strong at binding to LPS, inhibiting the interaction of LPS with LPS-binding protein (LBP), blocking LPS binding to CD14(+) cells, and suppressing production of tumor necrosis factor (TNF)-alpha by murine macrophages, RAW 264.7. In the murine endotoxin shock model, the peptide N2((18-30)) protected mice from LPS-induced lethal septic shock by inhibiting macrophage activation. These data indicate that the peptide N2((18-30)) derived from the amino-terminal region of C1INH is anti-endotoxin.  相似文献   

14.
Many mutations associated with atypical hemolytic uremic syndrome (aHUS) lie within complement control protein modules 19-20 at the C terminus of the complement regulator factor H (FH). This region mediates preferential action of FH on self, as opposed to foreign, membranes and surfaces. Hence, speculation on disease mechanisms has focused on deficiencies in regulation of complement activation on glomerular capillary beds. Here, we investigate the consequences of aHUS-linked mutations (R53H and R78G) within the FH N-terminal complement control protein module that also carries the I62V variation linked to dense-deposit disease and age-related macular degeneration. This module contributes to a four-module C3b-binding site (FH1-4) needed for complement regulation and sufficient for fluid-phase regulatory activity. Recombinant FH1-4(V62) and FH1-4(I62) bind immobilized C3b with similar affinities (K(D) = 10-14 μM), whereas FH1-4(I62) is slightly more effective than FH1-4(V62) as cofactor for factor I-mediated cleavage of C3b. The mutant (R53H)FH1-4(V62) binds to C3b with comparable affinity (K(D) ~12 μM) yet has decreased cofactor activities both in fluid phase and on surface-bound C3b, and exhibits only weak decay-accelerating activity for C3 convertase (C3bBb). The other mutant, (R78G)FH1-4(V62), binds poorly to immobilized C3b (K(D) >35 μM) and is severely functionally compromised, having decreased cofactor and decay-accelerating activities. Our data support causal links between these mutations and disease; they demonstrate that mutations affecting the N-terminal activities of FH, not just those in the C terminus, can predispose to aHUS. These observations reinforce the notion that deficiency in any one of several FH functional properties can contribute to the pathogenesis of this disease.  相似文献   

15.
Because of the complement system's involvement in many human diseases and potential complications associated with its systemic blockade, site-specific regulation of this effector system is an attractive concept. We report on further developments of such an approach using a single-chain Ab fragment as a vehicle to deliver complement regulatory proteins to a defined cell type. In a model system in which RBCs deficient in complement receptor 1-related gene/protein y (Crry) are rapidly cleared after injection into wild-type animals by a complement-dependent mechanism, we selectively reconstituted these cells with N- and C-terminally targeted recombinant forms of Crry. Transfusion of Crry-coated knockout RBCs into C57BL/6 mice extended their in vivo half-life from <5 min to approximately 2 days. Maintenance of protective levels of Crry (by a combined treatment of donor and recipient RBCs) led to nearly normal RBC survival. Uniform in vitro and in vivo coating of the RBCs and the more efficient complement inhibitory capacity of C-terminally tagged Crry were other interesting features of this experimental system. These results suggest the possibility of using the single-chain Ab fragment-mediated targeting concept of complement regulatory proteins to restrict complement inhibition to the site of its excessive activation.  相似文献   

16.
Plasminogen is a 92-kDa single chain glycoprotein that circulates in plasma as a zymogen and when converted to proteolytically active plasmin dissolves preformed fibrin clots and extracellular matrix components. Here, we characterize the role of plasmin(ogen) in the complement cascade. Plasminogen binds the central complement protein C3, the C3 cleavage products C3b and C3d, and C5. Plasminogen binds to C3, C3b, C3d, and C5 via lysine residues, and the interaction is ionic strength-dependent. Plasminogen and Factor H bind C3b; however, the two proteins bind to different sites and do not compete for binding. Plasminogen affects complement action in multiple ways. Plasminogen enhanced Factor I-mediated C3b degradation in the presence of the cofactor Factor H. Plasminogen when activated to plasmin inhibited complement as demonstrated by hemolytic assays using either rabbit or sheep erythrocytes. Similarly, plasmin either in the fluid phase or attached to surfaces inhibited complement that was activated via the alternative and classical pathways and cleaved C3b to fragments of 68, 40, 30, and 17 kDa. The C3b fragments generated by plasmin differ in size from those generated by the complement protease Factor I, suggesting that plasmin-mediated C3b cleavage fragments lack effector function. Plasmin also cleaved C5 to products of 65, 50, 30, and 25 kDa. Thus, plasmin(ogen) regulates both complement and coagulation, the two central cascade systems of a vertebrate organism. This complement-inhibitory activity of plasmin provides a new explanation why pathogenic microbes utilize plasmin(ogen) for immune evasion and tissue penetration.  相似文献   

17.
Peritoneal macrophages (PEMs) preferentially and rapidly take up oligomannose-coated liposomes (OMLs) and subsequently mature to induce a Th-1 immune response following administration of OMLs into the peritoneal cavity. Here, we examine the contributions of complement component C3 and complement receptor type 3 (CR3) to carbohydrate-dependent uptake of OMLs by PEMs. Effective uptake of OMLs into PEMs in vitro was observed only in the presence of peritoneal fluid (PF), and OMLs incubated with PF were incorporated by PEMs in vitro in the absence of PF. These phenomena were inhibited by methyl-alpha-mannoside, N-acetylglucosamine or EDTA, but not by galactose. Pull-down analysis followed by peptide mass fingerprinting of PF-treated OMLs indicated that the OMLs were opsonized with complement fragment iC3b. In vivo uptake of OMLs by PEMs was inhibited by intraperitoneal injection of an antibody against CR3, a receptor for iC3b, and OML uptake by PEMs in the peritoneal cavity was not observed in C3-deficient mice. Thus, our results indicate that OMLs are opsonized with iC3b in a mannose-dependent manner in the peritoneal cavity and then incorporated into PEMs via CR3.  相似文献   

18.
The cleavage of C3 by the C3 convertases (C3bBb and C4b2a) determines whether complement activation proceeds. Dissociation (decay acceleration) of these central enzymes by the regulators decay-accelerating factor (DAF), complement receptor 1 (CR1), factor H, and C4-binding protein (C4BP) controls their function. In a previous investigation, we obtained evidence implicating the alpha4/5 region of the type A domain of Bb (especially Tyr338) in decay acceleration of C3bBb and proposed this site as a potential interaction point with DAF and long homologous repeat A of CR1. Because portions of only two DAF complement control protein domains (CCPs), CCP2 and CCP3, are necessary to mediate its decay of the CP C3 convertase (as opposed to portions of at least three CCPs in all other cases, e.g. CCPs 1-3 of CR1), DAF/C4b2a provides the simplest structural model for this reaction. Therefore, we examined the importance of the C2 alpha4/5 site on decay acceleration of C4b2a. Functional C4b2a complexes made with the C2 Y327A mutant, the C2 homolog to factor B Y338A, were highly resistant to DAF, C4BP, and long homologous repeat A of CR1, whereas C2 substitutions in two nearby residues (N324A and L328A) resulted in partial resistance. Our new findings indicate that the alpha4/5 region of C2a is critical to decay acceleration mediated by DAF, C4BP, and CR1 and suggest that decay acceleration of C4b2a and C3bBb requires interaction of the convertase alpha4/5 region with a CCP2/CCP3 site of DAF or structurally homologous sites of CR1 and C4BP.  相似文献   

19.
Factor H is a regulatory glycoprotein of the complement system. We expressed the three N-terminal complement control protein modules of human factor H (FH1-3) and confirmed FH1-3 to be the minimal unit with cofactor activity for C3b proteolysis by factor I. We reconstructed FH1-3 from NMR-derived structures of FH1-2 and FH2-3 revealing an approximately 105-A-long rod-like arrangement of the modules. In structural comparisons with other C3b-engaging proteins, factor H module 3 most closely resembles factor B module 3, consistent with factor H competing with factor B for binding C3b. Factor H modules 1, 2, and 3 each has a similar backbone structure to first, second, and third modules, respectively, of functional sites in decay accelerating factor and complement receptor type 1; the equivalent intermodular tilt and twist angles are also broadly similar. Resemblance between molecular surfaces is closest for first modules but absent in the case of second modules. Substitution of buried Val-62 with Ile (a factor H single nucleotide polymorphism potentially protective for age-related macular degeneration and dense deposit disease) causes rearrangements within the module 1 core and increases thermal stability but does not disturb the interface with module 2. Replacement of partially exposed (in module 1) Arg-53 by His (an atypical hemolytic uremic syndrome-linked mutation) did not impair structural integrity at 37 degrees C, but this FH1-2 mutant was less stable at higher temperatures; furthermore, chemical shift differences indicated potential for small structural changes at the module 1-2 interface.  相似文献   

20.
Human complement factor H-related protein (CFHR) 4 belongs to the factor H family of plasma glycoproteins that are composed of short consensus repeat (SCR) domains. Although factor H is a well known inhibitor of the alternative complement pathway, the functions of the CFHR proteins are poorly understood. CFHR4 lacks SCRs homologous to the complement inhibitory domains of factor H and, accordingly, has no significant complement regulatory activities. We have previously shown that CFHR4 binds C-reactive protein via its most N-terminal SCR, which leads to classical complement pathway activation. CFHR4 binds C3b via its C terminus, but the significance of this interaction is unclear. Therefore, we set out to clarify the functional relevance of C3b binding by CFHR4. Here, we report a novel role for CFHR4 in the complement system. CFHR4 serves as a platform for the assembly of an alternative pathway C3 convertase by binding C3b. This is based on the sustained ability of CFHR4-bound C3b to bind factor B and properdin, leading to an active convertase that generates C3a and C3b from C3. The CFHR4-C3bBb convertase is less sensitive to the factor H-mediated decay compared with the C3bBb convertase. CFHR4 mutants containing exchanges of conserved residues within the C-terminal C3b-binding site showed significantly reduced C3b binding and alternative pathway complement activation. In conclusion, our results suggest that, in contrast to the complement inhibitor factor H, CFHR4 acts as an enhancer of opsonization by promoting complement activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号