首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Programmed cell death (PCD) is involved in plant development and pathogen defence and can be triggered in vitro by several biotic and abiotic stimuli. In this report ( β - d -galactosyl)3 Yariv reagent, a chemical that specifically binds to arabinogalactan-proteins (AGPs), completely inhibited cell growth and induced PCD in tobacco BY-2 suspension cultured cells. Analysis of DNA from these cells, by agarose gel electrophoresis, revealed a DNA ladder consisting of multimers of 140–170 bp, similar to apoptotic animal DNA internucleosomal fragmentation. Complementary morphological studies revealed additional PCD characteristics in the Yariv-treated BY-2 cells, including cell shrinkage and cytoplasmic condensation. These studies demonstrate the usefulness of BY-2 cells as a model plant PCD system and confirm a link between AGPs and PCD.  相似文献   

2.
Arabinogalactan-proteins (AGPs) are a family of highly glycosylated hydroxyproline-rich glycoproteins implicated in several aspects of plant growth and development. (β-d-glucosyl)3 Yariv phenylglycoside (β-GlcY), commonly known as Yariv reagent, selectively binds AGPs. We treated cell suspension cultures of Araucaria angustifolia, the Brazilian pine, with β-GlcY and observed inhibition of biomass increase in a culture medium with 50 μM β-GlcY. However, the growth was not inhibited by (α-d-galactosyl)3 Yariv phenylglycoside (α-GalY) which does not bind AGPs. Fluorescein diacetate staining of cells indicated that β-GlcY severely affected cell viability. However, cell swelling, bursting and release of cellular contents, all characteristics of necrotic cell death, were not observed in β-GlcY-treated cells. Instead, programmed cell death (PCD) structural changes such as cytoplasmic shrinkage and condensation were observed in β-GlcY-treated cells. In addition, callose accumulation, which is another marker of PCD, was also observed in β-GlcY-treated cells. The use of both, Ac-VEID-CHO, an inhibitor of caspase-like proteolytic activity related to PCD, and phenyl methyl sulphonyl fluoride (PMSF), a protease inhibitor known to suppress PCD, in the culture medium did not reverse the growth inhibition caused by β-GlcY. These data indicate that the β-GlcY-induced inhibition of Araucaria cell’s growth is related to AGP perturbation, and also that this growth inhibition is due to increased cell death not driven by necrosis.  相似文献   

3.
4.
Lei Ding  Jian-Kang Zhu 《Planta》1997,203(3):289-294
Arabinogalactan-proteins (AGPs) are abundant plant proteoglycans that react with (β-d-Glc)3 but not (β-d-Man)3 Yariv reagent. We report here that treatment with (β-d-Glc)3 Yariv reagent caused inhibition of root growth of Arabidopsis thaliana (L.) Heynh. seedlings. Moreover, the treated roots exhibited numerous bulging epidermal cells. Treatment with (β-d-Man)3 Yariv reagent did not have any such effects. These results indicate a role for AGPs in root growth and control of epidermal cell expansion. Because treatment with (β-d-Glc)3 Yariv reagent phenocopies the reb1 (root epidermal cell bulging) mutant of Arabidopsis, AGPs were extracted from the reb1-1 mutant and compared with those of the wild type. The reb1-1 roots contained an approximately 30% lower level of AGPs than the wild type. More importantly, while the profile of AGPs from wild-type roots showed two major peaks upon crossed electrophoresis, the profile of AGPs from reb1-1 roots exhibited only one of the major peaks. Therefore, the reb1 phenotype appears to be a result of defective or missing root AGPs. Taken together, this pharmacological and genetic evidence strongly indicates a function of AGPs in the control of root epidermal cell expansion. Received: 13 February 1997 / Accepted: 1 April 1997  相似文献   

5.
Arabinogalactan-proteins (AGPs) are a family of highly glycosylated hydroxyproline-rich glycoproteins present throughout the plant kingdom. A synthetic chemical reagent, ( β - d -Gal)3 Yariv reagent, specifically binds AGPs and can be used for histochemical staining, isolating and probing the function of AGPs. Here, the role of AGPs in tomato ( Lycopersicon esculentum Mill. cv. UC82B) seed germination and seedling growth was examined by following expression of AGPs during these events and by treatment with ( β - d -Gal)3 Yariv to perturb AGP function. AGP expression changed during germination and seedling development both quantitatively and qualitatively as revealed by analysis of total AGP content, crossed electrophoresis patterns, RNA blots using LeAGP-1 probe, and western blots with LeAGP-1, JIM13, and MAC207 antibodies. ( β - d -Gal)3 Yariv treatment of seeds and developing seedlings did not affect percent seed germination, but markedly inhibited seedling growth in roots and to a lesser degree in shoots. Root growth inhibition encompassed reductions in overall root length, epidermal root cell elongation, root cell numbers and root hair formation. This growth inhibition was reversible following removal of ( β - d -Gal)3 Yariv. In a related experiment, water uptake by tomato seedlings was greatly inhibited by ( β - d -Gal)3 Yariv treatment. Based on these experiments, AGPs are clearly associated with tomato seedling development and likely to function in root growth, more specifically in cell elongation, cell proliferation, root hair formation and water uptake.  相似文献   

6.
Arabinogalactan-proteins (AGPs) are a family of hydroxy-proline-rich glycoproteins implicated to function in plant growth and development. This report focuses on a novel, modular AGP found in tomato, LeAGP-1, which was predicted by DNA cloning and herein verified at the protein level as a major AGP component. LeAGP-1 was isolated from tomato suspension-cultured cells and verified to be an AGP by precipitation with (beta-D-galactosyl)3 Yariv phenylglycoside and by amino acid composition analysis. Furthermore, LeAGP-1 was determined to correspond to LeAGP-1 clones based on three criteria: (1) amino acid composition identity, (2) amino acid sequence identity, and (3) specific immunoreactivity of glycosylated and deglycosylated LeAGP-1 with an antibody developed against the highly basic subdomain predicted from LeAGP-1 clones. The antibody was also used to immunolocalize LeAGP-1 in tomato to the cell surface of suspension-cultured cells, maturing metaxylem elements in young internodes and petioles, and stylar transmitting tissue cells. At the subcellular level, LeAGP-1 immunolocalized to the cell walls of these particular cells as well as to intercellular spaces between stylar transmitting tissue cells. LeAGP-1 now emerges as one of the most comprehensively studied AGPs in terms of (1) characterization at the genomic DNA, cDNA and protein levels, (2) known organ-specific and developmentally regulated mRNA expression patterns, (3) development of an antibody against a unique, peptide subdomain which specifically recognizes LeAGP-1 in its glycosylated and deglycosylated states, and (4) immunolocalization of a single, well-defined AGP molecule at the tissue and subcellular levels.  相似文献   

7.
Effects of Yariv phenylglycoside on cell wall assembly in the lily pollen tube   总被引:18,自引:0,他引:18  
Arabinogalactan-proteins (AGPs) are proteoglycans with a high level of galactose and arabinose. Their current functions in plant development remain speculative. In this study, (β-D-glucosyl)3 Yariv phenylglycoside [(β-D-Glc)3] was used to perturb AGPs at the plasmalemma-cell wall interface in order to understand their functional significance in cell wall assembly during pollen tube growth. Lily (Lilium longiflorum Thunb.) pollen tubes, in which AGPs are deposited at the tip, were used as a model. Yariv phenylglycoside destabilizes the normal intercalation of new cell wall subunits, while exocytosis of the secretory vesicles still occurs. The accumulated components at the tip are segregated between fibrillar areas of homogalacturonans and translucent domains containing callose and AGPs. We propose that the formation of AGP/(β-D-Glc)3 complexes is responsible for the lack of proper cell wall assembly. Pectin accumulation and callose synthesis at the tip may also change the molecular architecture of the cell wall and explain the lack of proper cell wall assembly. The data confirm the importance of AGPs in pollen tube growth and emphasize their role in the deposition of cell wall subunits within the previously synthesized cell wall. Received: 14 August 1997 / Accepted: 9 September 1997  相似文献   

8.
Arabinogalactan proteins (AGPs) are glycoproteins present at cell surfaces. Although exact functions of AGPs remain elusive, they are implicated in plant growth and development. The aim of this study was to evaluate the role of AGPs in the process of cell aggregation of Beta vulgaris L. suspension cultures. It was observed that B. vulgaris suspension cultures accumulated AGPs in parallel form to its cell growth. The AGPs maximum content in the stationary phase was 0.330 mg g−1 dry weight (DW) in the cell wall (CW) and 1.534 mg g−1 DW in the culture medium (CM), generating cell aggregates >500 μm (93.21% DW). The addition of tunicamycin (TM) caused a reduction of AGPs content in CW and CM of 46 and 64%, respectively. These changes were associated with inhibition of growth and the reduction of the cell aggregates >500 μm (50.0% DW). When TM was removed from the CM, cell growth, aggregation, and AGPs content on CW and CM were recovered. Precipitation of AGPs with Yariv reagent generated a reduction of 61.14% of AGPs content in CW and a total inhibition of AGPs secretion in CM. This Yariv treatment generated a reduction in the cell aggregates >500 μm of 51.31% of DW. When the Yariv reagent was removed from the culture, cells did not recover their AGPs accumulation. In addition, cell cultures did not recover their ability to grow and aggregate. These results indicate that AGPs are molecules required in the cellular aggregation process of B. vulgaris L. suspension cultures.  相似文献   

9.
Zinc (Zn) is a trace element in human cells and regarded as an essential nutrient with established deficiency states affecting multiple organs in the body. However, it has been reported that Zn uptake is associated with some serious harmful effects, such as inhibition of DNA synthesis and enhanced toxicity from reactive oxygen species. We have previously shown that in vivo administration of Zn2+ in C57/6J mice induces weight loss and massive hair loss where the normal course hair becomes replaced by fine vello hair, simulating the side effects from cancer chemotherapy where oxidative free radical damage is implicated in association with DNA fragmentation and programmed cell death (PCD). Here, in vitro flow cytometric studies on human Chang liver showed Zn2+ causing cell condensation with DNA fragmentation that occurred in a dose-dependent manner, an effect replicated by micrococcal nuclease digestion. Specific terminal deoxynucleotidyl transferase- (TdT) mediated labeling of 3′-OH ends of DNA nicks corroborated the flow cytometric profiles of propidium iodide-DNA binding where degradation of both 2 and 4N genomic DNA resulted in a solitary 1N peak presentation. DNA degradation concomitant with cell condensation is seen as an estabilished hallmark of PCD. We further showed that Zn2+ could enhance the generation of hydroxyl free radicals (OH?) by the transition metal vanadium. Glutathione, the cell's main reducing agent, underwent corresponding reduction. The results suggested that Zn supplementation could induce features resembling PCD.  相似文献   

10.
Human peripheral blood monocytes progressively lose viability when cultured in the absence of serum, cytokines, or other stimuli. In this study, we investigated whether monocyte death results from membrane damage (i.e., necrosis) or internally regulated processes [i.e., programmed cell death (PCD) or apoptosis]. Our results clearly indicated that monocytes die by PCD when cultured without stimulation. Death was associated with fragmentation of DNA into integer multiples of approximately 200 bp, a decrease in cell size, condensation of the nucleus and cytoplasmic organelles, and membrane blebbing, all of which are cardinal features of PCD. Monocytes exposed to nonphysiologic conditions such as acidic media (pH 4.2), 56 degrees C for 30 min, or freezing and thawing were killed without concomitant DNA fragmentation, indicating that DNA fragmentation was not a result of cell death per se. Addition of Escherichia coli LPS, a potent monocyte activating agent, in concentrations as low as 0.1 ng/ml caused a marked increase in monocyte survival and prevented DNA fragmentation. Moreover, exogenous human rTNF-alpha or IL-1 beta also prevented PCD, suggesting that PCD is regulated by certain cytokines released from LPS-stimulated monocytes. The results indicate that in the absence of appropriate stimulation, monocytes are programmed to undergo a sequence of molecular events leading to cell death. Regulation of PCD may be an important homeostatic mechanism for controlling the number of monocytes available to respond to infection, wound healing, and tumor growth.  相似文献   

11.
Treatment of ‘Paul's Scarlet rose (Rosa sp.) cell suspensions with β-D-glucosyl Yariv phenylglycoside (β-D-Glc)3, a chromophoric molecule that selectively binds arabinogalactan-proteins (AGPs), caused inhibition of cell growth in a concentration-dependent manner, with complete inhibition of growth occurring at 50 μM (β-D-Glc)3 in the culture medium. Growth was not inhibited by either α-D-galactosyl or β-D-mannosyl Yariv phenylglycosides which do not bind AGPs. Staining of cells with fluorescein diacetate indicated that (β-D-Glc)3 did not affect cell viability. Upon transfer of 50 μM (β-D-Glc)3-treated cells to control conditions, cell growth recovered with a time-course similar to that of control cells. Cell sizes in control and (β-D-Glc)3-treated cultures were similar, indicating that the mechanism of growth inhibition by (β-D-Glc)3 involved suppression of cell division. Two different analyses of (β-D-Glc)3-treated cells both showed that approximately 95% of the bound (β-D-Glc)3 was in the cell wall. Molecules that bound (β-D-Glc)3 were extracted from the cell wall and were identified as AGPs, as judged by their carbohydrate and amino acid compositions.  相似文献   

12.
Programmed cell death (PCD) occurs in plants during development and defense, but the processes and mechanisms are not yet defined. Culture of carrot single cells at a cell density of <104 cells ml−1 activates a cell death process involving condensation and shrinkage of the cytoplasm and nucleus and fragmentation of the DNA. Modest abiotic stress treatments also cause cell condensation and shrinkage and the formation of DNA fragments, but the same abiotic stresses at high levels cause rapid necrosis with cell swelling and lysis. The common morphological features of cells dying at low cell density and following modest abiotic stress treatments suggest that these features reveal a PCD pathway in carrot. The addition of a cell-conditioned growth medium allows cells at low cell density to remain alive, demonstrating that cell-derived signal molecules suppress a pathway that is otherwise induced by default. Differences in the morphology of the dead cells suggest that proteolysis during PCD differs in detail in plants and animals; however, these findings show that plants, like animals, can control PCD by social signaling, and imply that the mechanism of PCD in plants and animals may be similar. Consistent with this, manipulation of signal pathway intermediates that regulate PCD in animals shows that Ca2+ and protein phosphorylation events are PCD pathway intermediates in carrot.  相似文献   

13.
Arabinogalactan proteins (AGPs) secreted by zucchini squash (Cucurbita pepo L.) cell cultures into the medium are implicated in cell proliferation. Conditioned medium derived from cell suspensions of squash cultivar Dundoo could enhance multiplication rate of slow-growing cell line Cx3005. To examine the role of AGPs, a precipitation assay was performed using Yariv reagent which binds selectively to AGPs. This AGP precipitation as well as proteinase application arrested cell division. However, chitinase treatment successfully increased embryogenic callus mass. A growth promotion was also obtained by arabinogalactan addition to the culture medium. Immunoblotting analysis using the MAC 207 anti-AGP monoclonal antibody showed high AGP expression in Dundoo cell cultures.  相似文献   

14.
Arabinogalactan proteins (AGPs) are hydroxyproline-rich glycoproteins present at the plasma membrane and in extracellular spaces. A synthetic chemical, beta-glucosyl Yariv reagent (beta-GlcY), binds specifically to AGPs. We previously reported that gibberellin signaling is specifically inhibited by beta-GlcY treatment in barley aleurone protoplasts. In the present study, we found that beta-GlcY also inhibited gibberellin-induced programmed cell death (PCD) in aleurone cells. We examined the universality and specificity of the inhibitory effect of beta-GlcY on gibberellin signaling using microarray analysis and found that beta-GlcY was largely effective in repressing gibberellin-induced gene expression. In addition, >100 genes were up-regulated by beta-GlcY in a gibberellin-independent manner, and many of these were categorized as defense-related genes. Defense signaling triggered by several defense system inducers such as jasmonic acid and a chitin elicitor could inhibit gibberellin-inducible events such as alpha-amylase secretion, PCD and expression of some gibberellin-inducible genes in aleurone cells. Furthermore, beta-GlcY repressed the gibberellin-inducible Ca2+-ATPase gene which is important for gibberellin-dependent gene expression, and induced known repressors of gibberellin signaling, two WRKY genes and a NAK kinase gene. These effects of beta-GlcY were also phenocopied by the chitin elicitor and/or jasmonic acid. These results indicate that gibberellin signaling is under the regulation of defense-related signaling in aleurone cells. It is also probable that AGPs are involved in the perception of stimuli causing defense responses.  相似文献   

15.
Arabinogalactan proteins (AGPs) are implicated in cell expansion by unknown mechanisms, thus AGP content and cell-expansion rate might be correlated. We used Yariv reagent to quantify release rates and distribution of AGP at the cell surface of tobacco BY-2 cells: plasma membrane (M); soluble periplasmic AGPs released by cell rupture (S); cell wall (W); and growth medium (Gsink). In contrast to earlier reports, we observed massive upregulation of AGPs in salt-stressed cells, and hence the absence of a simple, direct cause-and-effect relationship between growth rate and AGP release. There was a more subtle connection. A dynamic flux model, M-->S-->W-->Gsink, indicated that turnover was nondegradative, with little free diffusion of AGPs trapped in the pectic matrix of nonadapted cells where transmural migration of high molecular-weight AGPs occurred mainly by plug flow (apposition and extrusion). In contrast, however, an up to sixfold increased AGP release rate in the slower-growing salt-adapted cells indicated a greatly increased rate of AGP diffusion through a much more highly porous pectic network. We hypothesize that classical AGPs act as pectin plasticizers. This explains how beta-D-glycosyl Yariv reagents might inhibit expansion growth by crosslinking monomeric AGPs, and thus mimic an AGP loss-of-function mutation.  相似文献   

16.
The arabinogalactan protein (AGP) fractions of embryogenic and non-embryogenic callus lines of Euphorbia pulcherrima Willd. ex. Klotzsch were analysed over a cultivation period of 9 weeks using the β -glucosyl Yariv reagent and an anti-AGP antibody (LM2). The amount of AGPs detected with the Yariv reagent increased in embryogenic cultures during the development of somatic embryos. The embryogenic and non-embryogenic callus contained different sets of AGPs characterized with the Yariv reagent and the LM2 monoclonal antibody. AGPs recognized by LM2 are localized primarily in the protodermal cells of globular somatic embryos. The development of somatic embryos of E. pulcherrima appears to be associated with the presence of particular AGPs.  相似文献   

17.
Programmed cell death (PCD) has been recognized as a fundamental cellular process conserved in metazoans, plants and yeast. However, the cellular mechanisms leading to PCD have not been fully elucidated in unicellular organisms. Evidence is presented that heat stress induces PCD in Chlorella saccharophila cells. Our results demonstrate that heat shock triggers a PCD pathway occurring with characteristics features such as chromatin condensation, DNA fragmentation, cell shrinkage and detachment of the plasma membrane from the cell wall, and suggest the presence of caspase 3-like activity. The caspase 3 inhibitor Ac-DEVD-CHO gave significant protection against heat shock-induced cell death. Moreover, a reduction in photosynthetic pigment contents associated with alteration of chloroplast morphology and a fairly rapid disappearance of the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit and the light-harvesting complex of PSII have been observed. The timing of events in the signaling cascade associated with the C. saccharophila heat shock PCD response is discussed. Insights into this field may have general implications for understanding the pathway of cell death in unicellular green algae.  相似文献   

18.
Programmed cell death (PCD) plays a vital role in plant development and is involved in defence mechanisms against biotic and abiotic stresses. Different forms of PCD have been described in plants on the basis of the cell organelle first involved. In sycamore ( Acer pseudoplatanus L.) cultured cells, the phytotoxin fusicoccin (FC) induces cell death. However, only a fraction of the dead cells shows the typical hallmarks of animal apoptosis, including cell shrinkage, chromatin condensation, DNA fragmentation and release of cytochrome c from the mitochondrion. In this work, we show that the scavenging of nitric oxide (NO), produced in the presence of FC, by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) and rutin inhibits cell death without affecting DNA fragmentation and cytochrome c release. In addition, we show that FC induces a massive depolymerization of actin filaments that is prevented by the NO scavengers. Finally, the addition of actin-depolymerizing drugs induces PCD in control cells and overcomes the inhibiting effect of cPTIO on FC-induced cell death. Vice versa, the addition of actin-stabilizing drugs to FC-treated cells partially inhibits the phytotoxin-induced PCD. These results suggest that besides an apoptotic-like form of PCD involving the release of cytochrome c , FC induces at least another form of cell death, likely mediated by NO and independent of cytochrome c release, and they make it tempting to speculate that changes in actin cytoskeleton are involved in this form of PCD.  相似文献   

19.
M D Jacobson  J F Burne    M C Raff 《The EMBO journal》1994,13(8):1899-1910
The molecular basis of programmed cell death (PCD) is unknown. An important clue is provided by the Bcl-2 protein, which can protect many cell types from PCD, although it is not known where or how it acts. Nuclear condensation, DNA fragmentation and a requirement for new RNA and protein synthesis are often considered hallmarks of PCD. We show here, however, that anucleate cytoplasts can undergo PCD and that Bcl-2 and extracellular survival signals can protect them, indicating that, in some cases at least, the nucleus is not required for PCD or for Bcl-2 or survival factor protection. We propose that PCD, like the cell cycle, is orchestrated by a cytoplasmic regulator that has multiple intracellular targets.  相似文献   

20.
To characterize the spatial and temporal occurrence of programmed cell death (PCD) in Lilium anther tissues, we used both microscopical and molecular markers of apoptosis for developmental stages from meiosis to pollen release. The first hallmarks of PCD include cell condensation and shrinkage of the cytoplasm, separation of chromatin into delineated masses, and DNA fragmentation in the tapetum as early as the premeiosis stage. PCD then extended to other anther sporophytic tissues, leading to anther dehiscence. Although the PCD clearly affected the endothecium and the epidermis, these two cell layers remained alive until anther dehiscence. In pollen, no sign of PCD was found until pollen mitosis I, after what apoptotic features developed progressively in the vegetative cell. In addition, DNA ladders were detected in all sporophytic tissues and cell types throughout pollen development, whereas in the male gametophyte DNA ladders were only detected during pollen maturation. Our data suggest that PCD is a progressive and active process affecting all the anther tissues, first being triggered in the tapetum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号