首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Escherichia coli zitB gene encodes a Zn(II) transporter belonging to the cation diffusion facilitator family. ZitB is specifically induced by zinc. ZitB expression on a plasmid rendered zntA-disrupted E. coli cells more resistant to zinc, and the cells exhibited reduced accumulation of (65)Zn, suggesting ZitB-mediated efflux of zinc.  相似文献   

2.
Fine-tuning the RAS signaling pathway: Zn(2+) makes the difference   总被引:1,自引:0,他引:1  
Hajnal A 《Molecular cell》2002,9(5):927-928
In the May, 2002 issue of Developmental Cell, Bruinsma et al. report that the CDF-1 cation diffusion facilitator protein is required for efficient Ras-mediated signaling in C. elegans. CDF-1 reduces intracellular Zn(2+) levels, indicating an inhibitory effect of Zn(2+) on the Ras pathway.  相似文献   

3.
4.

Background  

Members of the cation diffusion facilitator (CDF) family are integral membrane divalent cation transporters that transport metal ions out of the cytoplasm either into the extracellular space or into internal compartments such as the vacuole. The spectrum of cations known to be transported by proteins of the CDF family include Zn, Fe, Co, Cd, and Mn. Members of this family have been identified in prokaryotes, eukaryotes, and archaea, and in sequenced plant genomes. CDF families range in size from nine members in Selaginella moellendorffii to 19 members in Populus trichocarpa. Phylogenetic analysis suggests that the CDF family has expanded within plants, but a definitive plant CDF family phylogeny has not been constructed.  相似文献   

5.
Glycerol transport is commonly cited as the only example of facilitated diffusion across the Escherichia coli cytoplasmic membrane. Two proteins, the glycerol facilitator and glycerol kinase, are involved in the entry of external glycerol into cellular metabolism. The glycerol facilitator is thought to act as a carrier or to form a selective pore in the cytoplasmic membrane, whereas the kinase traps the glycerol inside the cell as sn-glycerol-3-phosphate. We found that the kinetics of glycerol uptake in a facilitator-minus strain are significantly different from the kinetics of glycerol uptake in the wild type. Free glycerol was not observed inside wild-type cells transporting glycerol, and diffusion of glycerol across the cytoplasmic membrane was not the rate-limiting step for phosphorylation in facilitator-minus mutants. Therefore, the kinetics of glycerol phosphorylation are different, depending on the presence or absence of the facilitator protein. We conclude that there is an interaction between the glycerol facilitator protein and glycerol kinase that stimulates kinase activity, analogous to the hexokinase- and glycerol kinase-porin interactions in mitochondria.  相似文献   

6.
Members of the cation diffusion facilitator (CDF) family of membrane transport proteins are found in eukaryotes and prokaryotes. The family encompasses transporters of zinc ions, with cobalt, cadmium and lead ions being additional substrates for some prokaryotic examples. No transport mechanism has previously been established for any CDF protein. It is shown here that the CzcD protein of Bacillus subtilis, a CDF protein, uses an antiporter mechanism, catalysing active efflux of Zn2+ in exchange for K+ and H+. The exchange is probably electroneutral, energized by the transmembrane pH gradient and oppositely oriented gradients of the other cation substrates. The data suggest that Co2+ and Cd2+ are additional cytoplasmic substrates for CzcD. A second product of the same operon that encodes czcD has sequence similarity to oxidoreductases and is here designated CzcO. CzcO modestly enhances the activity of CzcD but is not predicted to be an integral membrane protein and has no antiport activity of its own.  相似文献   

7.
The Arabidopsis thaliana metal tolerance protein 1 (MTP1) of the cation diffusion facilitator family of membrane transport proteins can mediate the detoxification of Zn in Arabidopsis and yeast. Xenopus laevis oocytes expressing AtMTP1 accumulate more Zn than oocytes expressing the AtMTP1(D94A) mutant or water-injected oocytes. An AtMTP1-GFP fusion protein localizes to the vacuolar membrane in root and leaf cells. The analysis of Arabidopsis transformed with a promoter-GUS construct suggests that AtMTP1 is not produced throughout the plant, but primarily in the subpopulation of dividing, differentiating and expanding cells. RNA interference-mediated silencing of AtMTP1 causes Zn hypersensitivity and a reduction in Zn concentrations in vegetative plant tissues.  相似文献   

8.
A full-length cDNA (GintZnT1) encoding a putative Zn transporter was isolated from the extraradical mycelium of Glomus intraradices. Based on its sequence analysis, GintZnT1 was classified as a member of the cation diffusion facilitator (CDF) family of heavy metal transporters. Functional analysis of GintZnT1 was performed by heterologous expression in yeast mutants defective in different CDFs. Although Zn sensitivity of the mutants was not reverted, an effect of GintZnT1 on the labile regulatory Zn pool was detected by using a Zn-regulated beta-galactosidase reporter gene. GintZnT1 expression was studied in the extraradical mycelium obtained from a symbiotic root organ culture. Gin +/- ZnT1 was up-regulated in the extraradical mycelium of G. intraradices upon short-time exposure to Zn and when the mycelia were developed in 75 microM Zn supplemented plates. These data suggest a role of GintZnT1 in Zn compartmentalization and in the protection of G. intraradices against Zn stress.  相似文献   

9.
Transition metal transporters in plants   总被引:19,自引:0,他引:19  
Transition metals such as Fe, Cu, Mn, and Zn are essential minerals for normal plant growth and development, although they can be toxic when present in excess. Thus, for healthy plant growth, a range of transition metals must be acquired from the soil, distributed around the plant, and their concentrations carefully regulated within different cells and organelles. Membrane transport systems are likely to play a central role in these processes. The application of powerful genetic and molecular techniques has now identified a range of gene families that are likely to be involved in transition metal transport. These include the heavy metal ATPases (HMAs), the Nramps, the cation diffusion facilitator (CDF) family, the ZIP family, and the cation antiporters. This review provides a broad overview of the range of potential transport systems now thought to be involved in the uptake, distribution and homeostasis of transition metals in plants.  相似文献   

10.
Efflux-mediated heavy metal resistance in prokaryotes   总被引:35,自引:0,他引:35  
What makes a heavy metal resistant bacterium heavy metal resistant? The mechanisms of action, physiological functions, and distribution of metal-exporting proteins are outlined, namely: CBA efflux pumps driven by proteins of the resistance-nodulation-cell division superfamily, P-type ATPases, cation diffusion facilitator and chromate proteins, NreB- and CnrT-like resistance factors. The complement of efflux systems of 63 sequenced prokaryotes was compared with that of the heavy metal resistant bacterium Ralstonia metallidurans. This comparison shows that heavy metal resistance is the result of multiple layers of resistance systems with overlapping substrate specificities, but unique functions. Some of these systems are widespread and serve in the basic defense of the cell against superfluous heavy metals, but some are highly specialized and occur only in a few bacteria. Possession of the latter systems makes a bacterium heavy metal resistant.  相似文献   

11.
Phylogenetic relationships within cation transporter families of Arabidopsis   总被引:48,自引:0,他引:48  
Uptake and translocation of cationic nutrients play essential roles in physiological processes including plant growth, nutrition, signal transduction, and development. Approximately 5% of the Arabidopsis genome appears to encode membrane transport proteins. These proteins are classified in 46 unique families containing approximately 880 members. In addition, several hundred putative transporters have not yet been assigned to families. In this paper, we have analyzed the phylogenetic relationships of over 150 cation transport proteins. This analysis has focused on cation transporter gene families for which initial characterizations have been achieved for individual members, including potassium transporters and channels, sodium transporters, calcium antiporters, cyclic nucleotide-gated channels, cation diffusion facilitator proteins, natural resistance-associated macrophage proteins (NRAMP), and Zn-regulated transporter Fe-regulated transporter-like proteins. Phylogenetic trees of each family define the evolutionary relationships of the members to each other. These families contain numerous members, indicating diverse functions in vivo. Closely related isoforms and separate subfamilies exist within many of these gene families, indicating possible redundancies and specialized functions. To facilitate their further study, the PlantsT database (http://plantst.sdsc.edu) has been created that includes alignments of the analyzed cation transporters and their chromosomal locations.  相似文献   

12.
C. elegans cdf-1 was identified in a genetic screen for regulators of Ras-mediated signaling. CDF-1 is a cation diffusion facilitator protein that is structurally and functionally similar to vertebrate ZnT-1. These proteins have an evolutionarily conserved function as positive regulators of the Ras pathway, and the Ras pathway has an evolutionarily conserved ability to respond to CDF proteins. CDF proteins regulate Ras-mediated signaling by promoting Zn(2+) efflux and reducing the concentration of cytosolic Zn(2+), and cytosolic Zn(2+) negatively regulates Ras-mediated signaling. Physiological concentrations of Zn(2+) cause a significant inhibition of Ras-mediated signaling. These findings suggest that Zn(2+) negatively regulates a conserved element of the signaling pathway and that Zn(2+) regulation is important for maintaining the inactive state of the Ras pathway.  相似文献   

13.
Genomic sequencing of the beta-proteobacterium Wautersia (previously Ralstonia) metallidurans CH34 revealed the presence of three genes encoding proteins of the cation diffusion facilitator (CDF) family. One, CzcD, was previously found to be part of the high-level metal resistance system Czc that mediates the efflux of Co(II), Zn(II), and Cd(II) ions catalyzed by the CzcCBA cation-proton antiporter. The second CDF protein, FieF, is probably mainly a ferrous iron detoxifying protein but also mediated some resistance against other divalent metal cations such as Zn(II), Co(II), Cd(II), and Ni(II) in W. metallidurans or Escherichia coli. The third CDF protein, DmeF, showed the same substrate spectrum as FieF, but with different preferences. DmeF plays the central role in cobalt homeostasis in W. metallidurans, and a disruption of dmeF rendered the high-level metal cation resistance systems Czc and Cnr ineffective against Co(II). This is evidence for the periplasmic detoxification of substrates by RND transporters of the heavy metal efflux family subgroup.  相似文献   

14.
Sequence homology of the Escherichia coli YiiP places it within the family of cation diffusion facilitators, a family of membrane transporters that play a central role in regulating cellular zinc homeostasis. Here we describe the first thermodynamic and mechanistic studies of metal binding to a cation diffusion facilitator. Isothermal titration calorimetric analyses of the purified YiiP and binding competitions among Zn(2+), Cd(2+), and Hg(2+) revealed a mutually competitive binding site common to three metal ions and a set of noncompetitive binding sites, including one Cd(2+) site, one Hg(2+) site, and at least one Zn(2+) site, to which the binding of Zn(2+) exhibited partial inhibitions of both Cd(2+) and Hg(2+) bindings. Lowering the pH from 7.0 to 5.5 inhibited binding of Zn(2+) and Cd(2+) to the common site. Further, the enthalpy change of the Cd(2+) binding to the common site was found to be related linearly to the ionization enthalpy of the pH buffer with a slope corresponding to the release of 1.23 H(+) for each Cd(2+) binding. These H(+) effects are consistent with a coupled deprotonation process upon binding of Zn(2+) and Cd(2+). Modification of histidine residues by diethyl pyrocarbonate specifically inhibited Zn(2+) binding to the common binding site, indicating that the mechanism of binding-deprotonation coupling involves a histidine residue(s).  相似文献   

15.
Molecular characterization of a rice metal tolerance protein, OsMTP1   总被引:2,自引:0,他引:2  
Yuan L  Yang S  Liu B  Zhang M  Wu K 《Plant cell reports》2012,31(1):67-79
Rice (Oryza sativa L. 'Nipponbare') cDNA subtractive suppression hybridization (SSH) libraries constructed using cadmium (Cd)-treated seedling roots were screened to isolate Cd-responsive genes. A cDNA clone, encoding the rice homolog of Metal Tolerance Protein (OsMTP1), was induced by Cd treatment. Plant MTPs belong to cation diffusion facilitator (CDF) protein family, which are widespread in bacteria, fungi, plants, and animals. OsMTP1 heterologous expression in yeast mutants showed that OsMTP1 was able to complement the mutant strains' hypersensitivity to Ni, Cd, and Zn, but not other metals including Co and Mn. OsMTP1 expression increased tolerance to Zn, Cd, and Ni in wild-type yeast BY4741 during the exponential growth phase. OsMTP1 fused to green fluorescent protein was localized in onion epidermal cell plasma membranes, consistent with an OsMTP1 function in heavy metal transporting. OsMTP1 dsRNAi mediated by transgenic assay in rice seedlings resulted in heavy metal sensitivity and changed the heavy metal accumulation in different organs of mature rice under low-concentration heavy metal stress. Taken together, our results show that OsMTP1 is a bivalent cation transporter localized in the cell membrane, which is necessary for efficient translocation of Zn, Cd and other heavy metals, and maintain ion homeostasis in plant.  相似文献   

16.
The Ras-extracellular signal-regulated kinase (ERK) cascade is a critical intracellular signaling pathway that regulates growth, survival, and differentiation. Previous work established that Ras-GTP binds to, and facilitates the activation of, the protein kinase Raf-1. Recently, it was demonstrated that the cation diffusion facilitator (CDF) proteins are involved in Ras-ERK signaling by use of a Caenorhabditis elegans genetic screen that identified suppressors of activated Ras. In the current work, we demonstrate that CDF proteins may function downstream of Ras, but upstream of Raf-1 in Xenopus oocytes. We also show that the C. elegans protein CDF-1 and its mammalian homologue ZnT-1 bind to the amino-terminal regulatory portion of Raf-1 and promote the biological and enzymatic activity of Raf-1. Furthermore, we show that Zn(2+) inhibits Raf-1 binding to ZnT-1. We propose a model in which CDF protein binding facilitates Raf-1 activation.  相似文献   

17.
In this report, we show that zinc is required for endoplasmic reticulum function in Saccharomyces cerevisiae. Zinc deficiency in this yeast induces the unfolded protein response (UPR), a system normally activated by unfolded ER proteins. Msc2, a member of the cation diffusion facilitator (CDF) family of metal ion transporters, was previously implicated in zinc homeostasis. Our results indicate that Msc2 is one route of zinc entry into the ER. Msc2 localizes to the ER when expressed at normal levels. UPR induction in low zinc is exacerbated in an msc2 mutant. Genetic and biochemical evidence indicates that this UPR induction is due to genuine ER dysfunction. Notably, we found that ER-associated protein degradation is defective in zinc-limited msc2 mutants. We also show that the vacuolar CDF proteins Zrc1 and Cot1 are other pathways of ER zinc acquisition. Finally, zinc deficiency up-regulates the mammalian ER stress response indicating a conserved requirement for zinc in ER function among eukaryotes.  相似文献   

18.
The single known epidermal growth factor-like growth factor and single epidermal growth factor receptor in Caenorhabditis elegans mediate two types of processes, each via a distinct signal transduction pathway. Several instances of cell fate specification during organogenesis require the RAS-MAP kinase pathway, as well as multiple nuclear factors. By contrast, appropriate myoepithelial contractions during ovulation involve IP3-mediated signal transduction. Positive modulators of the RAS pathway include KSR, SUR-8, phosphatase PP2A, and a zinc cation diffusion facilitator. Negative regulators of the RAS pathway include homologs of CBL, GAP-1, ACK, and MAP kinase phosphatase, while negative regulators of the IP3 pathway are enzymes that modify IP3. In addition to its stimulation of RAS activity, the GRB2 homolog SEM-5 acts negatively on both signaling pathways, as does the Ack-related kinase ARK-1.  相似文献   

19.
Functional characterization of a novel mammalian zinc transporter, ZnT6   总被引:15,自引:0,他引:15  
We describe ZnT6, a new member of the CDF (cation diffusion facilitator) family of heavy metal transporters. The human ZNT6 gene was mapped at 2p21-22, while the mouse Znt6 was localized to chromosome 17. Overexpression of ZnT6 in both wild-type yeast and mutants that are deficient in cytoplasmic zinc causes growth inhibition, but this inhibition is abolished in mutant cells with high cytoplasmic zinc. ZnT6 may function in transporting the cytoplasmic zinc into the Golgi apparatus as well as the vesicular compartment, as evidenced by its overlapping intracellular localization with TGN38 and transferrin receptor in the normal rat kidney cells. We also demonstrate that the intracellular distributions of ZnT6 as well as ZnT4 are regulated by zinc in the normal rat kidney cells. The results from this report, combined with those from other studies, suggest that the intracellular zinc homeostasis is mediated by many ZnT proteins, which act in tissue-, cell-, and organelle-specific manners.  相似文献   

20.
ZitB is a member of the cation diffusion facilitator (CDF) family that mediates efflux of zinc across the plasma membrane of Escherichia coli. We describe the first kinetic study of the purified and reconstituted ZitB by stopped-flow measurements of transmembrane fluxes of metal ions using a metal-sensitive fluorescent indicator encapsulated in proteoliposomes. Metal ion filling experiments showed that the initial rate of Zn2+ influx was a linear function of the molar ratio of ZitB to lipid and was related to the concentration of Zn2+ or Cd2+ by a hyperbola with a Michaelis-Menten constant (K(m)) of 104.9 +/- 5.4 microm and 90.1 +/- 3.7 microm, respectively. Depletion of proton stalled Cd2+ transport down its diffusion gradient, whereas tetraethylammonium ion substitution for K+ did not affect Cd2+ transport, indicating that Cd2+ transport is coupled to H+ rather than to K+. H+ transport was inferred by the H+ dependence of Cd2+ transport, showing a hyperbolic relationship with a Km of 19.9 nm for H+. Applying H+ diffusion gradients across the membrane caused Cd2+ fluxes both into and out of proteoliposomes against the imposed H(+) gradients. Likewise, applying outwardly oriented membrane electrical potential resulted in Cd2+ efflux, demonstrating the electrogenic effect of ZitB transport. Taken together, these results indicate that ZitB is an antiporter catalyzing the obligatory exchange of Zn2+ or Cd2+ for H+. The exchange stoichiometry of metal ion for proton is likely to be 1:1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号