首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At present there are conflicting results from studies investigating the role of corticosteroids in inhibiting airway remodeling in asthma. We have used a mouse model to determine whether administration of corticosteroids prevents the development of allergen-induced structural features of airway remodeling. Mice treated with corticosteroids were subjected to repetitive ovalbumin (OVA) challenge for 3 mo, at which time levels of peribronchial fibrosis and the thickness of the peribronchial smooth muscle layer were assessed by immunohistology, levels of transforming growth factor (TGF)-beta1 by ELISA, and the number of alpha-smooth muscle actin+/Col-1+ peribronchial myofibroblasts by immunohistochemistry. Corticosteroids significantly reduced allergen-induced increases in peribronchial collagen deposition and levels of total lung collagen but did not reduce allergen-induced increases in the thickness of the peribronchial smooth muscle layer. Levels of lung TGF-beta1 were significantly reduced in mice treated with systemic corticosteroids, and this was associated with a significant decrease in the number of peribronchial inflammatory cells that expressed TGF-beta1, including eosinophils and mononuclear cells. Corticosteroids also significantly reduced the number of peribronchial myofibroblasts. Overall, these studies demonstrate that administration of corticosteroids significantly reduces levels of allergen-induced peribronchial fibrosis. The reduction in peribronchial fibrosis mediated by corticosteroids is likely to be due to several mechanisms including inhibition of expression of TGF-beta1, a reduction in the number of peribronchial inflammatory cells expressing TGF-beta1 (eosinophils, macrophages), as well as by corticosteroids reducing the accumulation of peribronchial myofibroblasts that contribute to collagen expression.  相似文献   

2.
Inhibition of allergen-induced airway remodeling in Smad 3-deficient mice   总被引:10,自引:0,他引:10  
Intracellular signaling pathways that converge on Smad 3 are used by both TGF-beta and activin A, key cytokines implicated in the process of fibrogenesis. To determine the role of Smad 3 in allergen-induced airway remodeling, Smad 3-deficient and wild-type (WT) mice were sensitized to OVA and challenged by repetitive administration of OVA for 1 mo. Increased levels of activin A and increased numbers of peribronchial TGF-beta1(+) cells were detected in WT and Smad 3-deficient mice following repetitive OVA challenge. Smad 3-deficient mice challenged with OVA had significantly less peribronchial fibrosis (total lung collagen content and trichrome staining), reduced thickness of the peribronchial smooth muscle layer, and reduced epithelial mucus production compared with WT mice. As TGF-beta and Smad 3 signaling are hypothesized to mediate differentiation of fibroblasts to myofibroblasts in vivo, we determined the number of peribronchial myofibroblasts (Col-1(+) and alpha-smooth muscle actin(+)) as assessed by double-label immunofluorescence microscopy. Although the number of peribronchial myofibroblasts increased significantly in WT mice following OVA challenge, there was a significant reduction in the number of peribronchial myofibroblasts in OVA-challenged Smad 3-deficient mice. There was no difference in levels of eosinophilic airway inflammation or airway responsiveness in Smad 3-deficient compared with WT mice. These results suggest that Smad 3 signaling is required for allergen-induced airway remodeling, as well as allergen-induced accumulation of myofibroblasts in the airway. However, Smad 3 signaling does not contribute significantly to airway responsiveness.  相似文献   

3.

Background

In this study we examined the role of Siglec-F, a receptor highly expressed on eosinophils, in contributing to mucus expression, airway remodeling, and Siglec-F ligand expression utilizing Siglec-F deficient mice exposed to chronic allergen challenge.

Methods

Wild type (WT) and Siglec-F deficient mice were sensitized and challenged chronically with OVA for one month. Levels of airway inflammation (eosinophils), Siglec-F ligand expresion and remodeling (mucus, fibrosis, smooth muscle thickness, extracellular matrix protein deposition) were assessed in lung sections by image analysis and immunohistology. Airway hyperreactivity to methacholine was assessed in intubated and ventilated mice.

Results

Siglec-F deficient mice challenged with OVA for one month had significantly increased numbers of BAL and peribronchial eosinophils compared to WT mice which was associated with a significant increase in mucus expression as assessed by the number of periodic acid Schiff positive airway epithelial cells. In addition, OVA challenged Siglec-F deficient mice had significantly increased levels of peribronchial fibrosis (total lung collagen, area of peribronchial trichrome staining), as well as increased numbers of peribronchial TGF-β1+ cells, and increased levels of expression of the extracellular matrix protein fibronectin compared to OVA challenged WT mice. Lung sections immunostained with a Siglec-Fc to detect Siglec-F ligand expression demonstrated higher levels of expression of the Siglec-F ligand in the peribronchial region in OVA challenged Siglec-F deficient mice compared to WT mice. WT and Siglec-F deficient mice challenged intranasally with IL-4 or IL-13 had significantly increased levels of airway epithelial Siglec-F ligand expression, whereas this was not observed in WT or Siglec-F deficient mice challenged with TNF-α. There was a significant increase in the thickness of the peribronchial smooth muscle layer in OVA challenged Siglec-F deficient mice, but this was not associated with significant increased airway hyperreactivity compared to WT mice.

Conclusions

Overall, this study demonstrates an important role for Siglec-F in modulating levels of chronic eosinophilic airway inflammation, peribronchial fibrosis, thickness of the smooth muscle layer, mucus expression, fibronectin, and levels of peribronchial Siglec-F ligands suggesting that Siglec-F may normally function to limit levels of chronic eosinophilic inflammation and remodeling. In addition, IL-4 and IL-13 are important regulators of Siglec-F ligand expression by airway epithelium.  相似文献   

4.

Background

Repeated exposure to inhaled allergen can cause airway inflammation, remodeling and dysfunction that manifests as the symptoms of allergic asthma. We have investigated the role of the cytokine interleukin-13 (IL-13) in the generation and persistence of airway cellular inflammation, bronchial remodeling and deterioration in airway function in a model of allergic asthma caused by chronic exposure to the aeroallergen House Dust Mite (HDM).

Methodology/Principal Findings

Mice were exposed to HDM via the intranasal route for 4 consecutive days per week for up to 8 consecutive weeks. Mice were treated either prophylactically or therapeutically with a potent neutralising anti-IL-13 monoclonal antibody (mAb) administered subcutaneously (s.c.). Airway cellular inflammation was assessed by flow cytometry, peribronchial collagen deposition by histocytochemistry and airway hyperreactivity (AHR) by invasive measurement of lung resistance (RL) and dynamic compliance (Cdyn). Both prophylactic and therapeutic treatment with an anti-IL-13 mAb significantly inhibited (P<0.05) the generation and maintenance of chronic HDM-induced airway cellular inflammation, peribronchial collagen deposition, epithelial goblet cell upregulation. AHR to inhaled methacholine was reversed by prophylactic but not therapeutic treatment with anti-IL-13 mAb. Both prophylactic and therapeutic treatment with anti-IL-13 mAb significantly reversed (P<0.05) the increase in baseline RL and the decrease in baseline Cdyn caused by chronic exposure to inhaled HDM.

Conclusions/Significance

These data demonstrate that in a model of allergic lung disease driven by chronic exposure to a clinically relevant aeroallergen, IL-13 plays a significant role in the generation and persistence of airway inflammation, remodeling and dysfunction.  相似文献   

5.
TGF-beta regulates airway responses via T cells   总被引:3,自引:0,他引:3  
Allergic asthma is characterized by airway hyperreactivity, inflammation, and a Th2-type cytokine profile favoring IgE production. Beneficial effects of TGF-beta and conflicting results regarding the role of Th1 cytokines have been reported from murine asthma models. In this study, we examined the T cell as a target cell of TGF-beta-mediated immune regulation in a mouse model of asthma. We demonstrate that impairment of TGF-beta signaling in T cells of transgenic mice expressing a dominant-negative TGF-beta type II receptor leads to a decrease in airway reactivity in a non-Ag-dependent model. Increased serum levels of IFN-gamma can be detected in these animals. In contrast, after injection of OVA adsorbed to alum and challenge with OVA aerosol, transgenic animals show an increased airway reactivity and inflammation compared with those of wild-type animals. IL-13 levels in bronchoalveolar lavage fluid and serum as well as the number of inducible NO synthase-expressing cells in lung infiltrates were increased in transgenic animals. These results demonstrate an important role for TGF-beta signaling in T cells in the regulation of airway responses and suggest that the beneficial effects observed for TGF-beta in airway hyperreactivity and inflammation may be due to its regulatory effects on T cells.  相似文献   

6.
7.
Allergic asthma is characterized by airway inflammation in response to chronic allergen exposure, resulting in remodeling of the airway wall accompanied by dysfunctional airway physiology. However, a link between the immune-inflammatory response to allergen and changes to airway structure and physiology has not yet been fully elucidated. Moreover, the impact of inhaled corticosteroids and beta(2)-agonists, the primary pharmacotherapy for asthma, on this process has not been completely evaluated. In this study, we employed a murine model of chronic exposure to a common environmental aeroallergen, house dust mite, to recapitulate the phenotype of clinical asthma. By examining the therapeutic effects of corticosteroid/beta(2)-agonist combination therapy with budesonide/formoterol (BUD/FORM) in this model of airway disease, we endeavored to determine the impact of BUD/FORM on lung inflammation, structure, and physiology. BUD/FORM was delivered either while allergen exposure was ongoing (concurrent therapy) or following the cessation of allergen exposure (postexposure therapy). Our results show that airway inflammation was substantially reduced in BUD/FORM-treated mice in the concurrent therapy group, whereas in the postexposure therapy group airway inflammation spontaneously resolved. In contrast, BUD/FORM was most effective in resolving several aspects of airway remodeling and bronchial hyperreactivity when delivered in conjunction with allergen withdrawal. This study demonstrates that although both BUD/FORM therapy and allergen avoidance independently reduce airway inflammation, only BUD/FORM therapy in conjunction with allergen avoidance can effectively reverse airway remodeling and bronchial hyperreactivity induced by chronic allergen exposure.  相似文献   

8.
Matrix metalloproteinases (MMPs) are a family of extracellular proteases that are responsible for the degradation of the extracellular matrix during tissue remodeling. We have used a mouse model of allergen-induced airway remodeling to determine whether MMP-9 plays a role in airway remodeling. MMP-9-deficient and wild-type (WT) mice were repetitively challenged intranasally with ovalbumin (OVA) antigen to develop features of airway remodeling including peribronchial fibrosis and increased thickness of the peribronchial smooth muscle layer. OVA-challenged MMP-9-deficient mice had less peribronchial fibrosis and total lung collagen compared with OVA-challenged WT mice. There was no reduction in mucus expression, smooth muscle thickness, or airway responsiveness in OVA-challenged MMP-9-deficient compared with OVA-challenged WT mice. OVA-challenged MMP-9-deficient mice had reduced levels of bronchoalveolar lavage (BAL) regulated on activation, normal T cell expressed, and secreted (RANTES), as well as reduced numbers of BAL and peribronchial eosinophils compared with OVA-challenged WT mice. There were no significant difference in levels of BAL eotaxin, thymus- and activation-regulated chemokine (TARC), or macrophage-derived chemokine (MDC) in OVA-challenged WT compared with MMP-9-deficient mice. Overall, this study demonstrates that MMP-9 may play a role in mediating selected aspects of allergen-induced airway remodeling (i.e., modest reduction in levels of peribronchial fibrosis) but does not play a significant role in mucus expression, smooth muscle thickness, or airway responsiveness.  相似文献   

9.
The development of chronic allergic dermatitis in early life has been associated with increased onset and severity of allergic asthma later in life. However, the mechanisms linking these two diseases are poorly understood. In this study, we report that the development of oxazolone-induced chronic allergic dermatitis, in a mouse model, caused enhanced OVA-induced allergic asthma after the resolution of the former disease. Our findings show that oxazolone-induced dermatitis caused a marked increase in tissue mast cells, which persisted long after the resolution of this disease. Subsequent OVA sensitization and airway challenge of mice that had recovered from dermatitis resulted in increased allergic airway hyperreactivity. The findings demonstrate that the accumulation of mast cells during dermatitis has the detrimental effect of increasing allergic airway hypersensitivity. Importantly, our findings also show that exposure to a given allergen can modify the immune response to an unrelated allergen.  相似文献   

10.
Ovalbumin (OVA) is the most frequently used allergen in animal models of asthma. Lipopolysaccharide (LPS) contaminating commercial OVA may modulate the evoked airway inflammatory response to OVA. However, the effect of LPS in OVA on airway remodeling, especially airway smooth muscle (ASM) has not been evaluated. We hypothesized that LPS in commercial OVA may enhance allergen-induced airway inflammation and remodeling. Brown Norway rats were sensitized with OVA on day 0. PBS, OVA, or endotoxin-free OVA (Ef-OVA) was instilled intratracheally on days 14, 19, 24. Bronchoalveolar lavage (BAL) fluid, lung, and intrathoracic lymph node tissues were collected 48 h after the last challenge. Immunohistochemistry for α-smooth muscle actin, Periodic-Acid-Schiff staining, and real-time qPCR were performed. Airway hyperresponsiveness (AHR) was also measured. BAL fluid macrophages, eosinophils, neutrophils, and lymphocytes were increased in OVA-challenged animals, and macrophages and neutrophils were significantly lower in Ef-OVA-challenged animals. The ASM area in larger airways was significantly increased in both OVA and Ef-OVA compared with PBS-challenged animals. The mRNA expression of IFN-γ and IL-13 in lung tissues and IL-4 in lymph nodes was significantly increased by both OVA and Ef-OVA compared with PBS and were not significantly different between OVA and Ef-OVA. Monocyte chemoattractant protein (MCP)-1 in BAL fluid and AHR were significantly increased in OVA but not in Ef-OVA. LPS contamination in OVA contributes to the influx of macrophages and MCP-1 increase in the airways and to AHR after OVA challenges but does not affect OVA-induced Th1 and Th2 cytokine expression, goblet cell hyperplasia, and ASM remodeling.  相似文献   

11.
Peribronchial inflammation contributes to the pathophysiology of allergic asthma. In many vascular beds, adhesive interactions between leukocytes and the endothelial surface initiate the recruitment of circulating cells. Previous studies using OVA-induced airway hyperreactivity indicated that P-selectin, a member of the selectin family expressed by activated platelets and endothelium, contributed to both inflammation and bronchoconstriction. The current study used cockroach allergen (CRA), an allergen that induces asthmatic responses in both humans and mice, to further investigate the role of selectins in the development of peribronchial inflammation and airway hyperreactivity. P- and E-selectin mRNAs were detected in extracts of CRA-sensitized animals beginning shortly after intratracheal challenge with CRA. The P-selectin mRNA was transiently induced at early time points while up-regulation of the E-selectin mRNA was more prolonged. Mice with targeted deletions in E-selectin (E(-)), P-selectin (P(-)), and both genes (E(-)/P(-)) showed 70-85% reductions in airway hyperreactivity, peribronchial inflammation, and eosinophil accumulation. The P(-) and E(-)/P(-) groups showed the most profound reductions. The transfer of splenic lymphocytes from CRA-primed E(-)/P(-) into naive wild-type (WT) mice produced the same level of airway hyperreactivity as transfers from CRA-primed WT into naive WT hosts, indicating that peripheral immunization was similar. The observed changes in the selectin-deficient animals were not related to inadequate sensitization, because CRA priming and challenge increased serum IgE levels. Furthermore, pulmonary Th2-type cytokines and chemokines in the E-selectin(-/-) and WT animals were similar. The findings indicate that both P- and E-selectin contribute to CRA-induced peribronchial inflammation and airway hyperreactivity.  相似文献   

12.
Airway remodeling is a major pathological feature of asthma. Up to now, its quantification still requires invasive methods. In this study, we aimed at determining whether in vivo micro-computed tomography (micro-CT) is able to demonstrate allergen-induced airway remodeling in a flexible mouse model of asthma. Sixty Balb/c mice were challenged intranasally with ovalbumin or saline at 3 different endpoints (Days 35, 75, and 110). All mice underwent plethysmography at baseline and just prior to respiratory-gated micro-CT. Mice were then sacrificed to assess bronchoalveolar lavage and lung histology. From micro-CT images (voxel size = 46×46×46 µm), the numerical values of total lung attenuation, peribronchial attenuation (PBA), and PBA normalized by total lung attenuation were extracted. Each parameter was compared between OVA and control mice and correlation coefficients were calculated between micro-CT and histological data. As compared to control animals, ovalbumin-sensitized mice exhibited inflammation alone (Day 35), remodeling alone (Day 110) or both inflammation and remodeling (Day 75). Normalized PBA was significantly greater in mice exhibiting bronchial remodeling either alone or in combination with inflammation. Normalized PBA correlated with various remodeling markers such as bronchial smooth muscle size or peribronchial fibrosis. These findings suggest that micro-CT may help monitor remodeling non-invasively in asthmatic mice when testing new drugs targeting airway remodeling in pre-clinical studies.  相似文献   

13.
The eotaxin chemokines have been implicated in allergen-induced eosinophil responses in the lung. However, the individual and combined contribution of each of the individual eotaxins is not well defined. We aimed to examine the consequences of genetically ablating eotaxin-1 or eotaxin-2 alone, eotaxin-1 and eotaxin-2 together, and CCR3. Mice carrying targeted deletions of these individual or combined genes were subjected to an OVA-induced experimental asthma model. Analysis of airway (luminal) eosinophilia revealed a dominant role for eotaxin-2 and a synergistic reduction in eotaxin-1/2 double-deficient (DKO) and CCR3-deficient mice. Examination of pulmonary tissue eosinophilia revealed a modest role for individually ablated eotaxin-1 or eotaxin-2. However, eotaxin-1/2 DKO mice had a marked decrease in tissue eosinophilia approaching the low levels seen in CCR3-deficient mice. Notably, the organized accumulation of eosinophils in the peribronchial and perivascular regions of allergen-challenged wild-type mice was lost in eotaxin-1/2 DKO and CCR3-deficient mice. Mechanistic analysis revealed distinct expression of eotaxin-2 in bronchoalveolar lavage fluid cells consistent with macrophages. Taken together, these results provide definitive evidence for a fundamental role of the eotaxin/CCR3 pathway in eosinophil recruitment in experimental asthma. These results imply that successful blockade of Ag-induced pulmonary eosinophilia will require antagonism of multiple CCR3 ligands.  相似文献   

14.

Background

Chronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in previously sensitized and challenged mice.

Methods

BALB/c mice were sensitized and challenged (primary) with ovalbumin (OVA). Six weeks later, a single OVA aerosol (secondary challenge) was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge.

Results

Mice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN) T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice.

Conclusion

These data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the neutrophil elastase inhibitor reduced AHR to inhaled methacholine indicating the potential for its use as a modulator of the immune/inflammatory response in both the neutrophil- and eosinophil-dominant phases of the response to secondary allergen challenge.  相似文献   

15.
Murine models of acute atopic asthma may be inadequate to study the effects of recurrent exposure to inhaled allergens, such as the epithelial changes seen in asthmatic patients. We developed a murine model in which chronic airway inflammation is maintained by repeated allergen [ovalbumin (OVA)] inhalation; using this model, we examined the response to mucosal administration of CpG DNA (oligonucleotides) and specific antigen immunotherapy. Mice repeatedly exposed to OVA developed significantly greater airway hyperresponsiveness and goblet cell hyperplasia, but not airway eosinophilia, compared with those exposed only twice. CpG-based immunotherapy significantly reversed both acute and chronic markers of inflammation as well as airway hyperresponsiveness. We further examined the effect of mucosal immunotherapy on the response to a second, unrelated antigen. Mice sensitized to both OVA and schistosome eggs, challenged with inhaled OVA, and then treated with OVA-directed immunotherapy demonstrated significant reduction of airway hyperresponsiveness and a moderate reduction in eosinophilia, after inhalation challenge with schistosome egg antigens. In this model, immunotherapy treatment reduced bronchoalveolar lavage (BAL) levels of Th2 cytokines (IL-4, IL-5, IL-13, and IL-10) without changing BAL IFN-gamma. Antigen recall responses of splenocytes from these mice demonstrated an antigen-specific (OVA) enhanced release of IL-10 from splenocytes of treated mice. These results suggest that CpG DNA may provide the basis for a novel form of immunotherapy of allergic asthma. Both antigen-specific and, to a lesser extent, antigen-nonspecific responses to mucosal administration of CpG DNA are seen.  相似文献   

16.
Most infections with respiratory viruses induce Th1 responses characterized by the generation of Th1 and CD8(+) T cells secreting IFN-gamma, which in turn have been shown to inhibit the development of Th2 cells. Therefore, it could be expected that respiratory viral infections mediate protection against asthma. However, the opposite seems to be true, because viral infections are often associated with the exacerbation of asthma. For this reason, we investigated what effect an influenza A (flu) virus infection has on the development of asthma. We found that flu infection 1, 3, 6, or 9 wk before allergen airway challenge resulted in a strong suppression of allergen-induced airway eosinophilia. This effect was associated with strongly reduced numbers of Th2 cells in the airways and was not observed in IFN-gamma- or IL-12 p35-deficient mice. Mice infected with flu virus and immunized with OVA showed decreased IL-5 and increased IFN-gamma, eotaxin/CC chemokine ligand (CCL)11, RANTES/CCL5, and monocyte chemoattractant protein-1/CCL2 levels in the bronchoalveolar lavage fluid, and increased airway hyperreactivity compared with OVA-immunized mice. These results suggest that the flu virus infection reduced airway eosinophilia by inducing Th1 responses, which lead to the inefficient recruitment of Th2 cells into the airways. However, OVA-specific IgE and IgG1 serum levels, blood eosinophilia, and goblet cell metaplasia in the lung were not reduced by the flu infection. Flu virus infection also directly induced AHR and goblet cell metaplasia. Taken together, our results show that flu virus infections can induce, exacerbate, and suppress features of asthmatic disease in mice.  相似文献   

17.
Airway inflammation and remodeling are important pathophysiologic features of chronic asthma. Previously, we have developed a mouse model of prolonged allergen challenge which exhibits many characteristics of chronic asthma such as goblet cell hyperplasia and subepithelial collagen deposition, in association with an increase in lung expression of the profibrotic mediator, TGF-beta. The aim of this study was to determine the effects of blockade of TGF-beta on the development of airway inflammation and remodeling using our murine model of prolonged allergen challenge. Importantly anti-TGF-beta Ab was administered therapeutically, with dosing starting after the onset of established eosinophilic airway inflammation. Therapeutic treatment of mice with anti-TGF-beta Ab significantly reduced peribronchiolar extracellular matrix deposition, airway smooth muscle cell proliferation, and mucus production in the lung without affecting established airway inflammation and Th2 cytokine production. Thus, our data suggest that it might be possible to uncouple airway inflammation and remodeling during prolonged allergen challenge. In addition, anti-TGF-beta Ab treatment was shown to regulate active TGF-beta signaling in situ with a reduction in the expression of phospho-Smad 2 and the concomitant up-regulation of Smad 7 in lung sections. Therefore, this is the first report to suggest that anti-TGF-beta Ab treatment prevents the progression of airway remodeling following allergen challenge even when given in a therapeutic mode. Moreover, the molecular mechanism behind this effect may involve regulation of active TGF-beta signaling.  相似文献   

18.
Mice homozygous for the STAT4-null mutation were sensitized to cockroach Ag, challenged intratracheally 21 days later, and compared with STAT4-competent allergic mice. The STAT4(-/-) mice showed significant decreases in airway hyperreactivity (AHR) and peribronchial eosinophils compared with wild-type controls. In addition, pulmonary levels of chemokines were decreased in the STAT4(-/-) mice, including CC chemokine ligand (CCL)5, CCL6, CCL11, and CCL17. However, levels of Th2-type cytokines, such as IL-4 and IL-13, as well as serum IgE levels were similar in the two groups. Transfer of splenic lymphocytes from sensitized wild-type mice into sensitized STAT4(-/-) mice did not restore AHR in the mutant mice. Furthermore, chemokine production and peribronchial eosinophilia were not restored during the cellular transfer experiments. Thus, it appears that STAT4 expression contributes to a type 2 process such as allergen-induced chemokine production and AHR. In additional studies, competent allergic mice were treated with anti-IL-12 locally in the airways at the time of allergen rechallenge. These latter studies also demonstrated a decrease in AHR. Altogether, these data suggest that STAT4-mediated pathways play a role locally within the airway for the exacerbation of the allergen-induced responses.  相似文献   

19.
Respiratory tolerance is inhibited by the administration of corticosteroids   总被引:3,自引:0,他引:3  
Corticosteroids constitute the most effective current anti-inflammatory therapy for acute and chronic forms of allergic diseases and asthma. Corticosteroids are highly effective in inhibiting the effector function of Th2 cells, eosinophils, and epithelial cells. However, treatment with corticosteroids may also limit beneficial T cell responses, including respiratory tolerance and the development of regulatory T cells (T(Reg)), which actively suppress inflammation in allergic diseases. To examine this possibility, we investigated the effects of corticosteroid administration on the development of respiratory tolerance. Respiratory exposure to Ag-induced T cell tolerance and prevented the subsequent development of allergen-induced airway hyperreactivity. However, treatment with dexamethasone during the delivery of respiratory Ag prevented tolerance, such that allergen sensitization and severe airway hyperreactivity subsequently occurred. Treatment with dexamethasone during respiratory exposure to allergen eliminated the development of IL-10-secreting dendritic cells, which was required for the induction of IL-10-producing allergen-specific T(Reg) cells. Therefore, because allergen-specific T(Reg) cells normally develop to prevent allergic disease and asthma, our results suggest that treatment with corticosteroids, which limit the development of T(Reg) cells and tolerance to allergens, could enhance subsequent Th2 responses and aggravate the long-term course of allergic diseases and asthma.  相似文献   

20.
Allergic asthma is characterized by Th2 type inflammation, leading to airway hyperresponsivenes, mucus hypersecretion and tissue remodeling. S-Nitrosoglutathione reductase (GSNOR) is an alcohol dehydrogenase involved in the regulation of intracellular levels of S-nitrosothiols. GSNOR activity has been shown to be elevated in human asthmatic lungs, resulting in diminished S-nitrosothiols and thus contributing to increased airway hyperreactivity. Using a mouse model of allergic airway inflammation, we report that intranasal administration of a new selective inhibitor of GSNOR, SPL-334, caused a marked reduction in airway hyperreactivity, allergen-specific T cells and eosinophil accumulation, and mucus production in the lungs in response to allergen inhalation. Moreover, SPL-334 treatment resulted in a significant decrease in the production of the Th2 cytokines IL-5 and IL-13 and the level of the chemokine CCL11 (eotaxin-1) in the airways. Collectively, these observations reveal that GSNOR inhibitors are effective not only in reducing airway hyperresponsiveness but also in limiting lung inflammatory responses mediated by CD4+ Th2 cells. These findings suggest that the inhibition of GSNOR may provide a novel therapeutic approach for the treatment of allergic airway inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号