共查询到20条相似文献,搜索用时 15 毫秒
1.
Deficit irrigation is an optimization strategy for achieving sustainability of irrigated crop production. A field-study of cotton (Gossypium hirsutum L.) response to a limited water supply was conducted in an Alfisol in the southern High Plains of Texas. The objectives were to investigate cotton N uptake, canopy temperature, plant spectral index and lint yield variation under deficit irrigation and to provide information for enhancing sustainability of the water resources and Alfisols in the semi-arid environment. The experimental treatments were two deficit-irrigation levels at 50% and 75% of cotton evapotranspiration (ET). Plant and soil variables were measured 15 m apart along the center-pivot irrigation circles. The results show that cotton plants under the 50%-ET deficit irrigation level were 21% more water stressed (P < 0.05) based on the reflectance water index ratio. The 50%-ET irrigation resulted in a 25% lint yield loss with a 33% water saving compared to the higher irrigation level (75%-ET). Plant reflectance, canopy temperature, total N uptake and lint yield were correlated with normalized difference vegetative index (NDVI), soil water content (SWC), soil NO3-N concentrations and elevation (−0.69 < r < 0.72, P < 0.05, respectively). Future cotton lint yield is weighted on NDVI and water variation, quantified in a multivariate autoregressive state-space model. Increases in plant reflectance in the water band are signs of early plant water stress. Compared to the 12-year regional cotton lint yield obtained with full irrigation, the 75%-ET deficit irrigation would be agronomical, economical efficient in Alfisoils with only 7.8% of lint-yield loss from water stress but 25% of water saving for sustainable water use. 相似文献
2.
3.
Significance and limits in the use of predawn leaf water potential for tree irrigation 总被引:4,自引:1,他引:4
Améglio Thierry Archer Philippe Cohen Moisés Valancogne Charles Daudet François-alain Dayau Sylvia Cruiziat Pierre 《Plant and Soil》1999,207(2):155-167
Research in estimating the water status of crops is increasingly based on plant responses to water stress. Several indicators
can now be used to estimate this response, the most widely available of which is leaf water potential (ΨLWP) as measured with a pressure chamber. For many annual crops, the predawn leaf water potential (ΨPLWP), assumed to represent the mean soil water potential next to the roots, is closely correlated to the relative transpiration
rate, RT. A similar correlation also holds for young fruit trees grown in containers. However, exceptions to this rule are
common when soil water content is markedly heterogeneous.
Two experimental conditions were chosen to assess the validity of this correlation for heterogeneous soil water content: 1)
young walnut trees in split-root containers. The heterogeneity was created by two unequal compartments (20% and 80% of total
volume), of which only the smaller was irrigated and kept at a moisture content higher than field capacity (permanent drainage).
2) adult walnut trees in an orchard. In this case, soil water heterogeneity was achieved by limiting the amount of localised
irrigation (20% of the irrigated control)
which was applied every evening.
Values of sap flux and of minimum and predawn leaf water potentials with homogeneous and heterogeneous soil water content
were compared for trees grown in the orchard and in containers. In spite of intense drought reflected by very low RT or stem
water potential, ΨPLWP of trees under heterogeneous moisture conditions remained high (between -0.2 and -0.4 MPa) both in the orchard and in containers.
These values were higher than those usually considered critical under homogeneous soil conditions. A semi-quantitative model,
based on the application of Ohm's analogy to split-root conditions, is proposed to explain the apparently conflicting results
in the literature on the relation between ΨPLWP and soil water potential.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
4.
膜下滴灌条件下滴水量和滴水频率对棉田土壤水分分布及水分利用效率的影响 总被引:11,自引:0,他引:11
通过两年的田间试验,研究了滴水量和滴水频率对膜下滴灌棉田土壤水分分布及棉花水分利用效率的影响.结果表明:从整个生育期来看,当滴水量(375 mm)相同时,高频滴灌(每3天1次)处理0~20 cm土层含水率较高而深层土壤湿润不够;低频滴灌(每10天1次)处理有利于水分的下渗和侧渗,深层土壤含水率较高,但水分补给不及时,表层土壤偏低;总体上中频滴灌(每7天1次)处理有利于水分在土壤剖面中的均匀分配.当滴水频率相同时,滴水量越大,土壤含水率越高,40 cm以下土层含水率也越高.不同处理的棉田耗水规律基本一致,苗期较低,平均不高于1.7 mm·d-1,蕾期开始上升至花铃期达到最高,日均耗水量可达8.7 mm·d-1,吐絮期回落到1.0 mm·d-1左右.总耗水量与降水和滴水量密切相关,而与滴水频率无关;滴水频率对棉花水分利用效率无显著影响,但水分利用效率随滴水量的增大而显著降低.少量滴灌(300 mm)虽然可以获得较高的水分利用效率,但减产严重,过量滴灌(450mm)无显著增产效应,水分浪费严重.在当地棉田自然条件下,采用中量(375 mm)+中低频(每7天或10天1次)的滴灌模式为宜. 相似文献
5.
Management options for reducing CO2 emissions from agricultural soils 总被引:18,自引:0,他引:18
Crop-based agriculture occupies 1.7 billion hectares, globally, with a soil C stock of about 170 Pg. Of the past anthropogenic CO2 additions to the atmosphere, about 50 Pg C came from the loss of soil organic matter (SOM) in cultivated soils. Improved management practices, however, can rebuild C stocks in agricultural soils and help mitigate CO2 emissions.Increasing soil C stocks requires increasing C inputs and/or reducing soil heterotrophic respiration. Management options that contribute to reduced soil respiration include reduced tillage practices (especially no-till) and increased cropping intensity. Physical disturbance associated with intensive soil tillage increases the turnover of soil aggregates and accelerates the decomposition of aggregate-associated SOM. No-till increases aggregate stability and promotes the formation of recalcitrant SOM fractions within stabilized micro- and macroaggregate structures. Experiments using13 C natural abundance show up to a two-fold increase in mean residence time of SOM under no-till vs intensive tillage. Greater cropping intensity, i.e., by reducing the frequency of bare fallow in crop rotations and increasing the use of perennial vegetation, can increase water and nutrient use efficiency by plants, thereby increasing C inputs to soil and reducing organic matter decomposition rates.Management and policies to sequester C in soils need to consider that: soils have a finite capacity to store C, gains in soil C can be reversed if proper management is not maintained, and fossil fuel inputs for different management practices need to be factored into a total agricultural CO2 balance. 相似文献
6.
Erfani A Wyseure G 《Communications in agricultural and applied biological sciences》2006,71(1):139-140
Waste water use for agricultural production in the semi-arid and arid climate areas is increasingly regarded as a solution for water shortage. Still today many questions remain unanswered about the mid- and long-term effect of irrigation by waste water on plant, soil and human health. In this paper the effect of the use of waste water on the soil hydraulic properties, the solute transport and transformation behaviour is being studied conducting steady state and non-steady state waste water application treatments on undisturbed soil columns and a field plot. Detailed spatial and temporal information on the propagation of water and solute is obtained using tensiometers, soil solute extraction and time domain reflectometry probes. The experimental data are processed using the HYDRUS-2D modeling tool. After calibration, the model is used in a predictive way as to simulate the mid- and long-term effects of the use of treated waste water as irrigation water. 相似文献
7.
Wheat root growth and seasonal water use as affected by irrigation under shallow water table conditions 总被引:1,自引:0,他引:1
Summary Irrigation experiments with wheat (Triticum aestivum L.) in clay loam, silty clay loam and the silty clay loam. Contrary to this, irrigation at late jointing, and late jointing and milk stages produced deepest root system in the loam. Roots followed the receding water table. was greatest in the loam. Avoiding irrigation at late jointing stage caused shifting of the zone of peak root density downwards and concentration of roots near water table both in the clay loam and the silty clay loam. Contrary to this, irrigation at late jointing, and late jointing and milk stages produced deepest root system in the loam. Roots followed the receding water table. Seasonal evapotranspiration (E) was affected by number of irrigations and water table depths. Water table contribution ranged from 61.6–64.5% of the total E in clay loam, from 39.0–46.8% of the total E in silty clay loam and from 4.0–8.1% of the total E in loam. Irrigations after late jointing contributed largely to the drainage. Yield was significantly higher in the treatments with scheduled irrigations at crown root initiation and late jointing stages in the clay loam and silty clay loam and at crown root initiation, late jointing and milk stages in the loam. This research has been financed in part by a grant made by USDA, ARS, authorized by Public Law-480 相似文献
8.
喷灌灌水量对冬小麦生长、耗水与水分利用效率的影响 总被引:7,自引:2,他引:7
于2006-2008年在中国科学院通州农田水循环与节水灌溉试验基地进行田间试验,研究灌水量对冬小麦生长、耗水、产量和水分利用效率的影响.试验设置了不同的灌水量处理,灌水量以布置在冬小麦冠层顶部20 cm标准蒸发皿蒸发量(E)的倍数表示.试验结果表明:2006-2007生长季节中0.75 E处理和2007-2008生长季节中0.625 E处理所对应的冬小麦产量最高.当灌水量小于0.25 E时,冬小麦生长受到水分胁迫,其产量下降25%以上.两个生长季节中冬小麦耗水量为219~486 mm,耗水量随灌水量的增加而增大.冬小麦产量和水分利用效率与耗水量之间呈二次函数关系.北京地区冬小麦返青后的生长季节内,其适宜喷灌水量为0.50~0.75 E. 相似文献
9.
Lauren Vogel 《CMAJ》2011,183(13):E1007-E1008
10.
11.
Influence of different irrigation regimes on crop yield and water use efficiency of olive 总被引:1,自引:0,他引:1
Anabela A. Fernandes-Silva Timóteo C. Ferreira Carlos M. Correia Aureliano C. Malheiro Francisco J. Villalobos 《Plant and Soil》2010,327(1-2):35-47
Despite increasing interest in the effects of climate change on soil processes, the response of nitrification to elevated CO2 remains unclear. Responses may depend on soil nitrogen (N) status, and inferences may vary depending on the methodological approach used. We investigated the interactive effects of elevated CO2 and inorganic N supply on gross nitrification (using 15N pool dilution) and potential nitrification (using nitrifying enzyme activity assays) in Dactylis glomerata mesocosms. We measured the responses of putative drivers of nitrification (NH 4 + production, NH 4 + consumption, and soil environmental conditions) and of potential denitrification, a process functionally linked to nitrification. Gross nitrification was insensitive to all treatments, whereas potential nitrification was higher in the high N treatment and was further stimulated by elevated CO2 in the high N treatment. Gross mineralization and NH 4 + consumption rates were also significantly increased in response to elevated CO2 in the high N treatment, while potential denitrification showed a significant increase in response to N addition. The discrepancy between the responses of gross and potential nitrification to elevated CO2 and inorganic N supply suggest that these measurements provide different information, and should be used as complementary approaches to understand nitrification response to global change. 相似文献
12.
13.
Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency 总被引:36,自引:0,他引:36
Controlled alternate partial root-zone irrigation (CAPRI), also called partial root-zone drying (PRD) in other literature, is a new irrigation technique and may improve the water use efficiency of crop production without significant yield reduction. It involves part of the root system being exposed to drying soil while the remaining part is irrigated normally. The wetted and dried sides of the root system are alternated with a frequency according to soil drying rate and crop water requirement. The irrigation system is developed on the basis of two theoretical backgrounds. (i) Fully irrigated plants usually have widely opened stomata. A small narrowing of the stomatal opening may reduce water loss substantially with little effect on photosynthesis. (ii) Part of the root system in drying soil can respond to the drying by sending a root-sourced signal to the shoots where stomata may be inhibited so that water loss is reduced. In the field, however, the prediction that reduced stomatal opening may reduce water consumption may not materialize because stomatal control only constitutes part of the total transpirational resistance. The boundary resistance from the leaf surface to the outside of the canopy may be so substantial that reduction in stomatal conductance is small and may be partially compensated by the increase in leaf temperature. It is likely that densely populated field crops, such as wheat and maize, may have a different stomatal control over transpiration from that of fruit trees which are more sparsely separated. It was discussed how long the stomata can keep 'partially' closed when a prolonged and repeated 'partial' soil drying is applied and what role the rewatering-stimulated new root growth may play in sensing the repeated soil drying. The physiological and morphological alternation of plants under partial root-zone irrigation may bring more benefits to crops than improved water use efficiency where carbon redistribution among organs is crucial to the determination of the quantity and quality of the products. 相似文献
14.
喷灌条件下耕作方式和亏缺灌溉对麦后移栽棉产量和水分利用的影响 总被引:1,自引:0,他引:1
探明耕作方式和亏缺灌溉对麦后移栽棉产量和水分利用的效应,对于建立麦后移栽棉的适宜耕作方式及灌溉制度十分重要.在大田条件下设置了翻耕和免耕2种耕作方式(灌水定额均为45 mm)及相应减小50%灌水定额的亏缺灌溉,分析了不同耕作方式和亏缺灌溉对棉花耗水规律、籽棉产量、水分利用效率和纤维品质的影响.结果表明:与翻耕相比,免耕减少了棉田20.3%的棵间土壤蒸发;不论何种耕作方式,亏缺灌溉在不影响棉花产量和纤维品质的同时,有效降低了耗水量,提高了水分利用效率.在喷灌条件下,灌水定额为22.5 mm的免耕耕作方式,不仅可有效降低麦后移栽棉田间无效棵间土壤蒸发,还可实现节水、优质、高产的有效统一. 相似文献
15.
Pachepsky Y Morrow J Guber A Shelton D Rowland R Davies G 《Letters in applied microbiology》2012,54(3):217-224
Aims: The focus of this work was to investigate the contribution of native Escherichia coli to the microbial quality of irrigation water and to determine the potential for contamination by E. coli associated with heterotrophic biofilms in pipe‐based irrigation water delivery systems. Methods and Results: The aluminium pipes in the sprinkler irrigation system were outfitted with coupons that were extracted before each of the 2‐h long irrigations carried out with weekly intervals. Water from the creek water and sprinklers, residual water from the previous irrigation and biofilms on the coupons were analysed for E. coli. High E. coli concentrations in water remaining in irrigation pipes between irrigation events were indicative of E. coli growth. In two of the four irrigations, the probability of the sample source, (creek vs sprinkler), being a noninfluential factor, was only 0·14, that is, source was an important factor. The population of bacteria associated with the biofilm on pipe walls was estimated to be larger than that in water in pipes in the first three irrigation events and comparable to one in the fourth event. Conclusion: Biofilm‐associated E. coli can affect microbial quality of irrigation water and, therefore, should not be neglected when estimating bacterial mass balances for irrigation systems. Significance and Impact of the Study: This work is the first peer‐reviewed report on the impact of biofilms on microbial quality of irrigation waters. Flushing of the irrigation system may be a useful management practice to decrease the risk of microbial contamination of produce. Because microbial water quality can be substantially modified while water is transported in an irrigation system, it becomes imperative to monitor water quality at fields, rather than just at the intake. 相似文献
16.
17.
灌溉与施氮对紫花苜蓿干草产量及水分利用效率的影响 总被引:1,自引:0,他引:1
在甘肃省河西绿洲灌区石羊河流域设计大田试验,研究了不同灌溉量[常规灌溉(330mm)、节水20%灌溉(264mm)和节水40%灌溉(198mm)]和施氮量(0、40、80和120kgN.hm-2)对紫花苜蓿(Medicagosativa)株高、干草产量和水分利用效率的影响。结果表明:灌溉与施氮对紫花苜蓿植株高度产生一定的影响,但其效果不明显;各茬紫花苜蓿干草产量随灌溉量增加而增加,不同灌溉之间的干草产量相差显著,节水40%灌溉、节水20%灌溉和常规灌溉的全生育期(3茬)平均干草产量分别为7232、7603和7796kg.hm-2;节水40%灌溉的水分利用效率(15.56kg.hm-2.mm-1)显著高于节水20%灌溉(13.86kg.hm-2.mm-1),节水20%灌溉的水分利用效率显著高于常规灌溉(12.60kg.hm-2.mm-1),水分利用效率随灌溉量增加而显著降低;当施氮量达到40kgN.hm-2时,紫花苜蓿干草产量(8223kg.hm-2)和水分利用效率(15.18kg.hm-2.mm-1)达到最大值,总干草产量比0、80和120kgN.hm-2施氮处理分别提高15%、16%和7%,水分利用效率分别提高14%、14%和8%。在河西绿洲灌区石羊河流域第一年种植紫花苜蓿,从经济、生态和环境方面考虑,节水40%灌溉和施氮40kgN.hm-2处理是较高干草产量和高水分利用效率取得一致的处理,应大面积推广。 相似文献
18.
滴灌条件下温室番茄需水量估算模型 总被引:4,自引:0,他引:4
基于修正后的Pnman-Monteith方程,通过分析作物系数与积温的关系,构建了基于常规气象资料的滴灌条件下温室番茄需水量估算模型,并分别采用2009年5月2-13日(开花坐果期)和6月9-20日(成熟采摘期)2个时段内的实测蒸腾量和实测棵间土壤蒸发量对模型模拟结果进行验证.结果表明:修正后的Penman-Monteith方程适用于温室参考作物需水量(ET0)的计算;温室番茄作物系数与积温呈抛物线关系;所建需水量模型模拟值的平均相对误差小于10%,可用于估算滴灌条件下温室番茄需水量. 相似文献
19.
Managing agricultural phosphorus for water quality protection: principles for progress 总被引:1,自引:0,他引:1
Peter J. A. Kleinman Andrew N. Sharpley Richard W. McDowell Don N. Flaten Anthony R. Buda Liang Tao Lars Bergstrom Qing Zhu 《Plant and Soil》2011,349(1-2):169-182
Background
The eutrophication of aquatic systems due to diffuse pollution of agricultural phosphorus (P) is a local, even regional, water quality problem that can be found world-wide.Scope
Sustainable management of P requires prudent tempering of agronomic practices, recognizing that additional steps are often required to reduce the downstream impacts of most production systems.Conclusions
Strategies to mitigate diffuse losses of P must consider chronic (edaphic) and acute, temporary (fertilizer, manure, vegetation) sources. Even then, hydrology can readily convert modest sources into significant loads, including via subsurface pathways. Systemic drivers, particularly P surpluses that result in long-term over-application of P to soils, are the most recalcitrant causes of diffuse P loss. Even in systems where P application is in balance with withdrawal, diffuse pollution can be exacerbated by management systems that promote accumulation of P within the effective layer of effective interaction between soils and runoff water. Indeed, conventional conservation practices aimed at controlling soil erosion must be evaluated in light of their ability to exacerbate dissolved P pollution. Understanding the opportunities and limitations of P management strategies is essential to ensure that water quality expectations are realistic and that our beneficial management practices are both efficient and effective. 相似文献20.
Roberto Tognetti Riccardo d’Andria Giovanni Morelli Arturo Alvino 《Plant and Soil》2005,273(1-2):139-155
A field experiment on olive trees (Olea europaea L.) was designed with the objective to search for an optimum irrigation scheduling by analyzing the possible effects of deficit irrigation. Treatments were: a non-irrigated control (rainfed) and three treatments that received seasonal water amount equivalent to 33 and 66% of crop evapotranspiration (ETC) in the period August–September (respectively 33II and 66II), and 66% of (ETC) from late May to early October (66I-II). Atmospheric evaporative demand and soil moisture conditions were regularly monitored. Irrigation effects on plant water relations were characterized throughout a growing season. Whole-plant water use, in deficit irrigated (66I-II) and rainfed olive trees, was determined using a xylem sap flow method (compensation heat-pulse technique). The magnitude of variations in water use and the seasonal dynamic of water relations varied among treatments, suggesting that olive trees were strongly responsive to both irrigation amount and time. Physiological parameters responded to variations in tree water status, soil moisture conditions and atmospheric evaporative demand. All measurements of tree water status were highly correlated with one another. There was a considerable degree of agreement between daily transpiration deduced from heat-pulse velocity and that determined by calibration using the water balance technique. Deficit irrigation during the whole summer (66I-II) resulted in improved plant water relations with respect to other watering regimes; while, severe regulated deficit irrigation differentiated only slightly 33II treatment from rainfed plants. Nevertheless, regulated deficit irrigation of olive trees after pit hardening (66II) could be recommended, at least in soil, cultivar and environmental conditions of this study. 相似文献