首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yu SY  Wu DC  Liu L  Ge Y  Wang YT 《Journal of neurochemistry》2008,106(2):889-899
Stimulated exocytosis and endocytosis of post-synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid subtype of glutamate receptors (AMPARs) have been proposed as primary mechanisms for the expression of hippocampal CA1 long-term potentiation (LTP) and long-term depression (LTD), respectively. LTP and LTD, the two most well characterized forms of synaptic plasticity, are thought to be important for learning and memory in behaving animals. Both LTP and LTD can also be induced in the lateral amygdala (LA), a critical structure involved in fear conditioning. However, the role of AMPAR trafficking in the expression of either LTP or LTD in this structure remains unclear. In this study, we show that NMDA receptor-dependent LTP and LTD can be reliably induced at the synapses of the auditory thalamic inputs to the LA in brain slices. The expression of LTP was prevented by post-synaptic blockade of vesicle-mediated exocytosis with application of a light chain of Clostridium tetanus neurotoxin and was associated with increased cell-surface AMPAR expression. In contrast, the expression of LTD was prevented by post-synaptic application of a glutamate receptor 2-derived interference peptide, which specifically blocks the stimulated clathrin-dependent endocytosis of AMPARs, and was correlated with a reduction in plasma membrane-surface expression of AMPARs. These results strongly suggest that regulated trafficking of post-synaptic AMPARs is also involved in the expression of LTP and LTD in the LA.  相似文献   

2.
We examined whether behavioral sensitization to amphetamine is associated with redistribution of glutamate receptors (GluR) in the rat nucleus accumbens (NAc) or dorsolateral striatum (DLSTR). Following repeated amphetamine treatment and 21 days of withdrawal, surface and intracellular levels of α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) or NMDA receptor subunits were determined using a protein cross-linking assay. In contrast to our previous results in cocaine-sensitized rats, we did not observe redistribution of GluR1 or GluR2 to the cell surface in the NAc after amphetamine withdrawal, although a small increase in total GluR1 was found in the shell subregion. Nor did we observe activation of signaling pathways associated with cocaine-induced AMPA receptor trafficking or changes in NMDA receptor subunits. No significant changes were observed in the DLSTR. We also investigated the effect of administering a challenge injection of amphetamine to amphetamine-sensitized rats 24 h prior to biochemical analysis based on prior studies showing that cocaine challenge decreases AMPA receptor surface expression in the NAc of cocaine-sensitized rats. GluR1 and GluR2 were not significantly altered in either NAc or DLSTR, although a modest effect on GluR3 cannot be ruled out. Our results suggest that glutamate transmission in the NAc is dramatically different in rats sensitized to amphetamine versus cocaine.  相似文献   

3.
α-Amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) are the primary mediators of excitatory synaptic transmission in the brain. Alterations in AMPAR localization and turnover have been considered critical mechanisms underpinning synaptic plasticity and higher brain functions, but the molecular processes that control AMPAR trafficking and stability are still not fully understood. Here, we report that mammalian AMPARs are subject to ubiquitination in neurons and in transfected heterologous cells. Ubiquitination facilitates AMPAR endocytosis, leading to a reduction in AMPAR cell-surface localization and total receptor abundance. Mutation of lysine residues to arginine residues at the glutamate receptor subunit 1 (GluA1) C-terminus dramatically reduces GluA1 ubiquitination and abolishes ubiquitin-dependent GluA1 internalization and degradation, indicating that the lysine residues, particularly K868, are sites of ubiquitination. We also find that the E3 ligase neural precursor cell expressed, developmentally down-regulated 4 (Nedd4) is enriched in synaptosomes and co-localizes and associates with AMPARs in neurons. Nedd4 expression leads to AMPAR ubiquitination, leading to reduced AMPAR surface expression and suppressed excitatory synaptic transmission. Conversely, knockdown of Nedd4 by specific siRNAs abolishes AMPAR ubiquitination. These data indicate that Nedd4 is the E3 ubiquitin ligase responsible for AMPAR ubiquitination, a modification that regulates multiple aspects of AMPAR molecular biology including trafficking, localization and stability.  相似文献   

4.
Glutamate receptor overactivation induces excitotoxic neuronal death, but the contribution of glutamate receptor subtypes to this excitotoxicity is unclear. We have previously shown that excitotoxicity by NMDA receptor overactivation is associated with choline release and inhibition of phosphatidylcholine synthesis. We have now investigated whether the ability of non-NMDA ionotropic glutamate receptor subtypes to induce excitotoxicity is related to the ability to inhibit phosphatidylcholine synthesis. alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-induced a concentration-dependent increase in extracellular choline and inhibited phosphatidylcholine synthesis when receptor desensitization was prevented. Kainate released choline and inhibited phosphatidylcholine synthesis by an action at AMPA receptors, because these effects of kainate were blocked by the AMPA receptor antagonist LY300164. Selective activation of kainate receptors failed to release choline, even when kainate receptor desensitization was prevented. The inhibition of phosphatidylcholine synthesis evoked by activation of non-desensitizing AMPA receptors was followed by neuronal death. In contrast, specific kainate receptor activation, which did not inhibit phosphatidylcholine synthesis, did not produce neuronal death. Choline release and inhibition of phosphatidylcholine synthesis were induced by AMPA at non-desensitizing AMPA receptors well before excitotoxicity. Furthermore, choline release by AMPA required the entry of Ca(2+) through the receptor channel. Our results show that AMPA, but not kainate, receptor overactivation induces excitotoxic cell death, and that this effect is directly related to the ability to inhibit phosphatidylcholine synthesis. Moreover, these results indicate that inhibition of phosphatidylcholine synthesis is an early event of the excitotoxic process, downstream of glutamate receptor-mediated Ca(2+) overload.  相似文献   

5.
The hormone leptin crosses the blood brain barrier and regulates numerous neuronal functions, including hippocampal synaptic plasticity. Here we show that application of leptin resulted in the reversal of long-term potentiation (LTP) at hippocampal CA1 synapses. The ability of leptin to depotentiate CA1 synapses was concentration-dependent and it displayed a distinct temporal profile. Leptin-induced depotentiation was not associated with any change in the paired pulse facilitation ratio or the coefficient of variance, indicating a post-synaptic locus of expression. Moreover, the synaptic activation of NMDA receptors was required for leptin-induced depotentiation as the effects of leptin were blocked by the competitive NMDA receptor antagonist, D-aminophosphovaleric acid (D-AP5). The signaling mechanisms underlying leptin-induced depotentiation involved activation of the calcium/calmodulin-dependent protein phosphatase, calcineurin, but were independent of c- jun NH2 terminal kinase. Furthermore, leptin-induced depotentiation was accompanied by a reduction in α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor rectification indicating that loss of glutamate receptor 2 (GluR2)-lacking AMPA receptors underlies this process. These data indicate that leptin reverses hippocampal LTP via a process involving calcineurin-dependent internalization of GluR2-lacking AMPA receptors which further highlights the key role for this hormone in regulating hippocampal synaptic plasticity and neuronal development.  相似文献   

6.
Abstract: Nitric oxide release is reported to be involved in physiological processes associated with altered sensitivity of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) class of glutamate receptor. A series of compounds liberating nitric oxide were therefore tested for their ability to modulate in vitro the characteristics of [3H]AMPA binding to sections of rat brain. Pretreatment of forebrain or cerebellar sections with sodium nitroprusside (1 m M ), S -nitroso- N -acetylpenicillamine (SNAP, 200 µ M ), glyceryl trinitrate (1 µ M ), or isosorbide dinitrate (0.5 m M ) all increased the binding of 3 n M [3H]AMPA by 15–30%. These actions were reproduced by 8-bromo-cyclic GMP (200 µ M ) in the cerebellum but not in the forebrain. In a similar manner, the effect of SNAP was attenuated by an inhibitor of cyclic GMP-dependent protein kinase in the cerebellum but not in the forebrain. The elevated [3H]AMPA binding observed after pretreatment with SNAP was caused by an increase in binding affinity, but the capacity of the sites was unchanged. Autoradiographic analysis showed that forebrain binding was enhanced in the cerebral cortex and hippocampus but not in the striatum. Nitric oxide therefore appears to be able to increase the affinity of AMPA binding sites via two distinct mechanisms in different brain areas. This action may contribute to synaptic plasticity associated with nitric oxide release.  相似文献   

7.
Excitotoxicity mediated via the ( S )-α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) subtype of receptor for l -glutamate contributes to various neuropathologies involving acute brain injury and chronic degenerative disorders. In this study, AMPA-induced neuronal injury and staurosporine (STS)-mediated apoptosis were compared in primary neuronal cultures of murine cerebral cortex by analyzing indices up- and downstream of mitochondrial activation. AMPA-mediated apoptosis involved induction of Bax, loss of mitochondrial transmembrane potential (ΔΨm), early release of cytochrome c (cyt c ), and more delayed release of second mitochondrial activator of caspases (SMAC), Omi, and apoptosis-inducing factor (AIF) with early calpain and minor late activation of caspase 3. STS-induced apoptosis was characterized by a number of differences, a more rapid time course, non-involvement of ΔΨm, and relatively early recruitment of SMAC and caspase 3. The AMPA-induced rise in intracellular calcium appeared insufficient to evoke ΔΨm as release of cyt c preceded mitochondrial depolarization, which was followed by the cytosolic translocation of SMAC, Omi, and AIF. Bax translocation preceded cyt c release for both stimuli inferring its involvement in apoptotic induction. Inclusion of the broad spectrum caspase inhibitor zVAD-fmk reduced the AMPA-induced release of cyt c , SMAC, and AIF, while only affecting the redistribution of Omi and AIF in the STS-treated neurons. Only AIF release was affected by a calpain inhibitor (calpastatin) which exerted relatively minor effects on the progression of cellular injury. AMPA-mediated release of apoptogenic proteins was more hierarchical relative to STS with its calpain activation and caspase-dependent AIF redistribution arguing for a model with cross-talk between caspase-dependent/independent apoptosis.  相似文献   

8.
The Rap family of small GTPases is implicated in the mechanisms of synaptic plasticity, particularly synaptic depression. Here we studied the role of Rap in neuronal morphogenesis and synaptic transmission in cultured neurons. Constitutively active Rap2 expressed in hippocampal pyramidal neurons caused decreased length and complexity of both axonal and dendritic branches. In addition, Rap2 caused loss of dendritic spines and spiny synapses, and an increase in filopodia-like protrusions and shaft synapses. These Rap2 morphological effects were absent in aspiny interneurons. In contrast, constitutively active Rap1 had no significant effect on axon or dendrite morphology. Dominant-negative Rap mutants increased dendrite length, indicating that endogenous Rap restrains dendritic outgrowth. The amplitude and frequency of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-mediated miniature excitatory postsynaptic currents (mEPSCs) decreased in hippocampal neurons transfected with active Rap1 or Rap2, associated with reduced surface and total levels of AMPA receptor subunit GluR2. Finally, increasing synaptic activity with GABA(A) receptor antagonists counteracted Rap2's inhibitory effect on dendrite growth, and masked the effects of Rap1 and Rap2 on AMPA-mediated mEPSCs. Rap1 and Rap2 thus have overlapping but distinct actions that potentially link the inhibition of synaptic transmission with the retraction of axons and dendrites.  相似文献   

9.
Glutamate signaling in the mature retinal tissue is very important for accurate sensory decoding by retinal neurons and orchestrates the fine-tuned output from the retina to higher-order centers at the cerebral cortex. In this study, we show that glutamate induces a rapid extracellular-regulated kinase and cAMP-responsive element binding protein (CREB) phosphorylation in cultured developing retinal neurons. This process is reliant on α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors and nitric oxide (NO) signaling and independent of NMDA receptors activation, as it is blocked by α-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate antagonists as well as inhibiting NO synthase with NG-nitro- l -arginine methyl ester but not by the NMDA channel blocker dizocilpine maleate. The effect of NO on extracellular-regulated kinase and CREB is mediated by the classical NO/soluble guanylyl cyclase/protein kinase G pathways as it is inhibited by the soluble guanylyl cyclase blocker 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one and the protein kinase G inhibitor KT5823, respectively. Immunocytochemical data suggest that increased CREB phosphorylation in response to glutamate occurs in glial cell nuclei. We also have supporting evidence suggesting that neuronally produced NO directly reaches the glial cells and stimulates CREB phosphorylation. Hence, the results indicate the importance of neuronal–glial communication and glutamate/NO/CREB linkage during retinal development.  相似文献   

10.
Human Bcl-2 protects against AMPA receptor-mediated apoptosis   总被引:6,自引:0,他引:6  
Dysfunctions of the (S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) subtype of ionotropic receptor for the brain's major excitatory neurotransmitter, L-glutamate, occur in various neurological conditions. We have previously demonstrated that AMPA receptor-mediated excitotoxicity occurs by apoptosis and here examined the influence of the expression of cell death repressor gene Bcl-2 on this excitotoxic insult. Using neuronal cortical cultures prepared from transgenic mice expressing the human Bcl-2 gene, the influence of Bcl-2 on AMPA receptor-mediated neuronal death was compared with that seen with staurosporine and H2O2. At day 6 cultures were exposed to AMPA (0.1-100 microM), and cellular injury was analyzed 48 h after insult using phase-contrast microscopy, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide viability assay, and DNA staining with 4,6-diamidino-2-phenylindole and Sytox Green. AMPA produced a concentration-dependent increase in cell death that was significantly attenuated by human Bcl-2. AMPA (3 microM) increased the number of apoptotic nuclei to 60% of control in wild-type cultures, and human Bcl-2 significantly decreased the number of apoptotic nuclei to 30% of AMPA-treated cultures. Human Bcl-2 only provided significant neuroprotection against neuronal injury induced by low concentrations of staurosporine (1-10 nM) and H2O2 (0.1-30 microM) and where neuronal death was by apoptosis, but not against H2O2-induced necrosis. Our findings indicate that overexpression of Bcl-2 in primary cultured neurons protects in an insult-dependent manner against AMPA receptor-mediated apoptosis, whereas protection was not seen against more traumatic insults. This study provides new insights into the molecular therapeutics of neurodegenerative conditions.  相似文献   

11.
Abstract: Exogenous phospholipases have been used extensively as tools to study the role of membrane lipids in receptor mechanisms. We used in vitro quantitative autoradiography to evaluate the effect of phospholipase A2 (PLA2) on N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors in rat brain. PLA2 pretreatment induced a significant increase in α-[3H]amino-3-hydroxy-5-methylisoxazole-4-propionate ([3H]AMPA) binding in the stratum radiatum of the CA1 region of the hippocampus and in the stratum moleculare of the cerebellum. No modification of [3H]AMPA binding was found in the stratum pyramidale of the hippocampus at different ligand concentrations. [3H]-Glutamate binding to the metabotropic glutamate receptor and the non-NMDA-, non-kainate-, non-quisqualate-sensitive [3H]glutamate binding site were also increased by PLA2 pretreatment. [3H]Kainate binding and NMDA-sensitive [3H]glutamate binding were minimally affected by the enzyme pretreatment. The PLA2 effect was reversed by EGTA, the PLA2 inhibitor p-bromophenacyl bromide, and prolonged pretreatment with heat. Bovine serum albumin (1%) prevented the increase in metabotropic binding by PLA2. Arachidonic acid failed to mimic the PLA2 effect on metabotropic binding. These results indicate that PLA2 can selectively modulate certain subtypes of excitatory amino acid receptors. This effect is due to the enzymatic activity but is probably not correlated with the formation of arachidonic acid metabolites. Independent of their possible physiological implications, our results provide the first autoradiographic evidence that an enzymatic treatment can selectively affect the binding properties of excitatory amino acid receptors in different regions of the CNS.  相似文献   

12.
13.
14.
Glutamate was previously shown to enhance aerobic glycolysis i.e. increase glucose utilization and lactate production with no change in oxygen levels, in mouse cortical astrocytes by a mechanism involving glutamate uptake. It is reported here that a similar response is produced in both hippocampal and cerebellar astrocytes. Application of the cognitive-enhancing drug CX546 promoted further enhancement of glucose utilization by astrocytes from each brain area following glutamate exposure. alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors represent the purported molecular target of cognitive-enhancing drugs such as CX546, and the presence of AMPA receptor subunits GluR1-4 was evidenced in astrocytes from all three regions by immunocytochemistry. AMPA itself did not stimulate aerobic glycolysis, but in the presence of CX546, a strong enhancement of glucose utilization and lactate production was obtained in cortical, hippocampal and cerebellar astrocytes. The effect of CX546 was concentration-dependent, with an EC(50) of 93.2 microm in cortical astrocytes. AMPA-induced glucose utilization in the presence of CX546 was prevented by the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and the negative modulator GYKI 52466. In addition, the metabolic effect of CX546 in the presence of AMPA was mimicked by the AMPA receptor modulator cyclothiazide. Our data suggest that astrocyte energetics represents a novel target for cognitive-enhancing drugs acting as AMPA receptor modulators.  相似文献   

15.
α-氨-3-羟基-5-甲基-4-异恶唑丙酸受体(α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors,AMPA receptors)介导中枢神经系统(CNS)绝大多数快兴奋性突触传递,在学习、记忆和认知等方面具有重要功能. 突触AMPA受体的数量、分布和亚基组成是调节突触传递强度的一个主要机制,与AMPA受体转运密切相关. 最新研究显示,异常的AMPA受体转运与阿尔茨海默病(Alzheimer’s disease,AD)、脆性X综合征(fragile X syndrome, FXS)等神经疾病有关. 本文主要针对AMPA受体转运及其调控的分子机制做一综述,以期为AD、FXS等神经疾病提供新的治疗靶点和途径.  相似文献   

16.
Abstract: Cultured cerebellar granule cells become vulnerable to excitatory amino acids, especially to NMDA and kainate, by 9 days in vitro. In the same time, the sensitivity of cells to (RS)-α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), in terms of AMPA-induced toxicity or 45Ca2+ uptake, was very low. The low AMPA responsiveness was due to receptor desensitization, because agents known to block desensitization, cyclothiazide and the lectins concanavalin A and wheat germ agglutinin, rendered granule cells vulnerable to AMPA and produced a pronounced stimulation of 45Ca2+ accumulation. 45Ca2+ influx was induced specifically by AMPA-receptor stimulation, because it was blocked virtually completely by 2,3-dihydroxy-6-nitro-7-sulfamoylbenzoquinoxaline (NBQX) and the benzodiazepine GYKI 52466 (selective non-NMDA receptor antagonists). Nevertheless, indirect routes activated by cellular responses to AMPA-receptor stimulation contributed significantly to the overall 45Ca2+ influx. These included Ca2+ uptake through NMDA-receptor channels, voltage-sensitive Ca2+ channels, and via Na+/Ca2+ exchange. However, nearly one-fifth of the total 45Ca2+ influx remained unaccounted for and this estimate was similar to 45Ca2+ influx observed under Na+-free conditions. This observation suggested that a significant proportion of the Ca2+ flux passes through the AMPA-receptor channel proper, a view supported by Co2+ uptake into nearly all granule cells on exposure to AMPA in the presence of cyclothiazide. Results are discussed in light of the reported AMPA receptor-subunit composition of cerebellar granule cells in vitro.  相似文献   

17.
Abstract: The structure of N -acetylaspartylglutamate (NAAG) suggests this neuronal dipeptide as a candidate for interaction with discrete subclasses of ionotropic and metabotropic acidic amino acid receptors. A substantial difficulty in the assay of these interactions is posed by membrane-bound peptidase activity that converts the dipeptide to glutamate and N -acetylaspartate, molecules that will interfere with receptor assays. We have developed two sets of unique receptor assay conditions and applied one standard assay to measure the interactions, under equilibrium binding conditions, of [3H]kainate, [3H]amino-3-hydroxy-5-methylisoxazole-4-propionic acid ([3H]AMPA), and [3H]CGS-19755 with the three classes (kainate, quisqualate, and N -methyl- d -aspartate) of ionotropic glutamate receptors, while inhibiting peptidase activity against NAAG. Under these conditions, NAAG exhibits apparent inhibition constants (IC50) of 500, 790, and 8.8 µ M in the kainate, AMPA, and CGS-19755 receptor binding assays, respectively. Glutamate was substantially more effective and less specific in these competition assays, with inhibition constants of 0.36, 1.1, and 0.37 µ M . These data support the hypothesis that, relative to glutamate, NAAG functions as a specific, low potency agonist at N -methyl- d -aspartate subclass of ionotropic acidic amino acid receptors, but the peptide is not likely to activate directly the kainate or quisqualate subclasses of excitatory ionotropic receptors under physiologic conditions.  相似文献   

18.
Allosteric modulators and mutations that slow AMPAR desensitization have additional effects on deactivation and agonist potency. We investigated whether these are independent actions or the natural consequence of slowing desensitization. Effects of cyclothiazide (CTZ), trichlormethiazide (TCM), and CX614 were compared at wild-type GluR1 and “nondesensitizing” GluR1-L497Y mutant receptors by patch-clamp recording with ultrafast perfusion. CTZ, TCM, or L/Y mutation all essentially blocked GluR1 desensitization; however, the effects of L/Y mutation on deactivation and glutamate EC50 were three to five times greater than for modulators. CTZ and TCM further slowed desensitization of L/Y mutant receptors but paradoxically accelerated deactivation and increased agonist EC50. Results indicate that CTZ and TCM target deactivation and agonist potency independently of desensitization, most likely by modifying agonist dissociation (koff). Conversely, CX614 slowed desensitization and deactivation without affecting EC50 in both wild-type and L/Y receptors. The S750Q or combined L497Y-S750Q mutations abolished all CTZ and TCM actions without disrupting CX614 activity. Notably, the S/Q mutation also restored L/Y deactivation and EC50 to wild-type levels without restoring desensitization, further demonstrating that desensitization can be modulated independently of deactivation and EC50 by mutagenesis and possibly by allosteric modulators.  相似文献   

19.
Abstract: The binding of [3H]NS 257 {1,2,3,6,7,8-hexahydro-3-(hydroxyimino)- N,N -[3H]dimethyl-7-methyl-2-oxobenzo[2,1- b :3,4- c '] dipyrrole-5-sulfonamide} to rat cortical membranes was characterized in the absence and presence of thiocyanate. Specific [3H]NS 257 binding was saturable and reversible, and the stimulating effect of thiocyanate on binding was optimal at 100 m M . In the presence of thiocyanate [3H]NS 257 bound to a single population of binding sites with an affinity of 225 ± 8 n M and a binding site density of 0.61 ± 0.04 pmol/mg of original tissue. Thiocyanate increased the affinity of the binding site labeled by [3H]NS 257 for both α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and l -glutamate by a factor of 20 and 5, respectively. However, the affinity of the agonist domoate and the antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo( f )-quinoxaline (NBQX) was decreased in the presence of thiocyanate. Apparently, the affinities of antagonists as well as agonists for the AMPA receptor can be either increased or decreased by thiocyanate. The rank order of potency of the putative agonists quisqualate > AMPA > l -glutamate > domoate > kainate and of the antagonists NBQX > CNQX is consistent with the labeling of AMPA receptors. Autoradiographic studies showed that the distribution of [3H]NS 257 binding sites in rat brain was similar to that of [3H]AMPA binding sites. NS 257 is the first AMPA antagonist to be described showing an increased affinity for the AMPA receptor in the presence of thiocyanate.  相似文献   

20.
The structure and distribution of non-N-methyl-D-aspartate glutamate receptors in the rat brain were studied using subunit-specific antibodies that recognize the receptor subunit GluR1. The GluR1 protein, a 106-kDa glycoprotein, appears predominantly in synaptic plasma membranes, where it is highly enriched in the postsynaptic densities. When synaptic plasma membranes are solubilized with the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, high-affinity alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) binding and GluR1 immunoreactivity comigrate at a native Mr of 610,000. GluR1 is enriched in the hippocampus and cerebellar cortex but is present throughout the CNS. It is found on neuronal cell bodies and processes within most regions of the brain; within the cerebellum, however, it is localized to the Bergmann glia. These data suggest that the GluR1 protein is a subunit of multimeric AMPA-preferring glutamate receptors present on neurons and on specialized glia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号