首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyridoxal kinase (ATP:pyridoxal 5-phosphotransferase, EC 2.7.1.35) has been purified 9000-fold from sheep brain by affinity chromatography. The enzyme of 80,000 molecular weight is made up of two identical-size subunits. The interaction of the inhibitor N-dansyl-1,8-diaminooctane with the nucleotide site of the kinase was examined by means of steady and nanosecond fluorescence spectroscopy. N-Dansyl-1,8-diaminooctane is a competitive inhibitor with respect to ATP at saturating concentrations of pyridoxal. It binds to the nucleotide site of the enzyme with Kd = 2.2 microM. Bound N-dansyl-1,8-diaminooctane is shielded from collisional encounters with the external quencher acrylamide. The collisional rate constant for bound N-dansyl-1,8-diaminooctane (Kq = 1.4 X 10(8) M-1 X s-1) is 10-times lower than the value obtained for the free chromophore. Nanosecond emission anisotropy measurements yield a rotational correlation time of 42 ns for the inhibitor complexes to the kinase. Both steady and nanosecond fluorescence results are consistent with a model in which the inhibitor bound to the nucleotide site is immobilized by amino acids located at the catalytic site.  相似文献   

2.
Pyridoxal kinase has been purified 2000-fold from pig brain. The enzyme preparation migrates as a single protein and activity band on analytical gel electrophoresis. The interactions of the substrate pyridoxal and the inhibitor N-dansyl-2-oxopyrrolidine (dansyl = 5-dimethylaminonaphthalene-1-sulfonyl) with the catalytic site were examined by means of fluorescence spectroscopy. The increase in emission anisotropy that follows the binding of pyridoxal to the kinase was used to determine the equilibrium dissociation constant. Pyridoxal kinase binds one molecule of substrate with a Kd = 11 microns at pH 6. The emission anisotropy spectrum of bound pyridoxal reveals that the substrate is not rigidly trapped by the protein matrix. N-Dansyl-2-oxopyrrolidine is a competitive inhibitor with respect to ATP at saturating concentrations of pyridoxal. It binds to the enzyme with a dissociation constant of 6 microns. N-Dansyl-2-oxopyrrolidine is immobilized by strong interactions with the enzyme, but it is displaced from the catalytic site by ATP. The results are consistent with the hypothesis that N-dansyl-2-oxopyrrolidine binds at the nucleotide binding site of pyridoxal kinase.  相似文献   

3.
Pyridoxal kinase has been purified 2,000-fold from pig brain. The enzyme preparation migrates as a single protein and activity band on analytical gel electrophoresis. Pyridoxal kinase, 60,000 molecular weight, catalyzes the phosphorylation of pyridoxal (Km = 2.5 x 10(-5) M) and pyridoxine (Km = 1.7 x 10(-5) M). Pyridoxamine is not a substrate of the purified kinase. Irradiation of the kinase in the presence of riboflavin leads to irreversible loss of catalytic activity. Riboflavin binds to the kinase with a KD = 5 microM as shown by fluorometric titrations. Singlet excited oxygen, generated by energy transfer from the lowest triplet of riboflavin to oxygen, acts as the oxidizing agent of approximately one histidine residue per mol of enzyme. The amino acid residues tyrosine, tryptophan, and cysteine are not photooxidized by the sensitizer bound to the enzyme. It is postulated that histidine is involved in the binding of the substrate ATP to the catalytic site of pyridoxal kinase.  相似文献   

4.
Physical interactions between pyridoxal kinase and aspartate aminotransferase were detected by means of emission anisotropy and affinity chromatography techniques. Binding of aspartate aminotransferase (apoenzymes) to pyridoxal kinase tagged with a fluorescent probe was detected by emission anisotropy measurements at pH 6.8 (150 mM KCl). Upon saturation of the kinase with the aminotransferase, the emission anisotropy increases 22%. The protein complex is characterized by a dissociation constant of 3 microM. Time-dependent emission anisotropy measurements conducted with the mixture 5-naphthylamine-1-sulfonic acid-kinase aspartate aminotransferase (apoenzyme), revealed the presence of two rotational correlation times of phi 1 = 36 and phi 2 = 62 ns. The longer correlation time is attributed to the stable protein complex. By immobilizing one enzyme (pyridoxal kinase) through interactions with pyridoxal-Sepharose, it was possible to demonstrate that aspartate aminotransferase releases pyridoxal kinase. A test of compartmentation of pyridoxal-5-phosphate within the protein complex using alkaline phosphatase as trapping agent, indicates that the cofactor generated by the catalytic action of the kinase is channeled to the apotransaminase. The main function of the stable complex formed by the kinase and the aminotransferase is to hinder the release of free pyridoxal-5-phosphate into the bulk solvent.  相似文献   

5.
Arrangement of the substrates at the active site of brain pyridoxal kinase   总被引:1,自引:0,他引:1  
The distances between enzyme-bound paramagnetic CrATP (a stable, beta, gamma-bidentate complex of Cr3+ and ATP) at the active site of sheep brain pyridoxal kinase and the protons of bound inhibitor 4-dPyr (4-deoxypyridoxine) were determined in the ternary enzyme-CrATP.4-dPyr complex by measuring the paramagnetic effects of Cr3+ on the longitudinal relaxation rates (1/T1p) of the protons of 4-dPyr. The correlation time for the Cr(3+)-4-dPyr dipolar interaction on the enzyme was estimated as 1.59 ns by the frequency dependence of 1/T1p of water protons. Temperature dependence of 1/T1p values indicated the fast exchange of 4-dPyr from the paramagnetic enzyme.CrATP.4-dPyr complex; hence the measured 1/T1p values can be used for metalnucleus distance determinations. The distances from the Cr3+ of the enzyme-bound CrATP to the 2-methyl (7.19 A), 4-methyl (7.18 A), and H6 proton (6.18 A) of the 4-dPyr are too great to permit a direct coordination of any group from 4-dPyr. However, these distances can be built into a model in which phosphorus of the gamma-phosphoryl group of ATP is 4 A away from the oxygen atom of the 5-CH2OH group of the 4-dPyr. This suggests that phosphorylation of pyridoxal can occur via direct transfer of the phosphoryl group between the bound substrates at the active site of pyridoxal kinase.  相似文献   

6.
The fluorescence dye 1-anilino-naphthalene-8-sulphonic acid (ANS) was used as a probe of non-polar binding sites in the enzyme plasma amine oxidase. Steady fluorescence measurements indicate that ANS binds to a single binding site of the dimeric enzyme with a dissociation constant of 5 microns. This binding site is different from the catalytic binding site. Nanosecond emission anisotropy measurements were performed on the ANS-enzyme in an effort to detect independent rotation of the subunits in the native enzyme. The observed rotational correlation time (phi = 105 ns) corresponds to the rotation of a rigid dimeric macromolecule. A rotational correlation time of 120 ns was obtained with the enzyme labelled with pyrenebutyric acid. It is concluded that the dimeric enzyme does not exhibit any modes of flexibility due to independent rotation of the subunits in the nanosecond range.  相似文献   

7.
The sequential binding of Sr2+ and Ca2+ to the cytoplasmic transport sites of the sarcoplasmic reticulum calcium ATPase allows the formation of two different mixed complexes: cE.Sr.Ca, with Sr2+ bound to the "inner" site and Ca2+ bound to the "outer" site, and cE. Ca.Sr, with Ca2+ bound to the inner site and Sr2+ bound to the outer site (pH 7.0, 25 degrees C, 10 mM MgCl2, 100 mM KCl). Both cE.Sr.45Ca and cE.45Ca.Sr react with ATP to internalize one 45Ca/phosphoenzyme. The value of K0.5 = 83 microM Sr2+ for activation of the enzyme for phosphorylation by ATP is much larger than K0.5 = 28 microM Sr2+ for inhibition of phosphoenzyme formation from inorganic phosphate (eta H = 1.0-1.3). These results are consistent with the sequential binding of two strontium ions with negative cooperativity and dissociation constants of KSr1 = 35 microM and KSr2 = 55 microM. The species cE.Sr2 and cE.Ca2 react rapidly with ATP but not inorganic phosphate. However, enzyme with one strontium bound, cE.Sr, does not react with either inorganic phosphate or ATP. Therefore, the conformational changes in the enzyme that alter the chemical specificity for phosphorylation by ATP and by inorganic phosphate are different. This requires the existence of at least three forms of the unphosphorylated enzyme with three different chemical specificities for catalysis.  相似文献   

8.
Reversible dissociation of the dimeric structure of brain pyridoxal kinase into subunits was attained by addition of guanidinium HCl (2 M). The molecular mass of the subunits (40 kDa) was determined by HPLC chromatography. Separation of the processes of refolding and association of the monomeric species was achieved by attaching the protein subunits to a rigid matrix (Affi-gel 15). The matrix-bound monomer is catalytically competent. The reaction of the crosslinking reagent 4,4'-dimaleimidestilbene 2,2'-disulfonate (DMDS), a derivatized stilbene, with the dimeric structure of pyridoxal kinase resulted in the formation of an oligomeric species of 80 kDa detectable by SDS-PAGE. The crosslinked subunits exhibit the same catalytic parameters as the native enzyme. The presence of two nucleotide-binding sites per dimer was determined by fluorimetric titrations using pyridoxyl-ATP, a strong competitive inhibitor with respect to ATP. The ATP analog binds with a Kd = 5 microM to each nucleotide site of the dimeric enzyme. The mode of binding pyridoxyl-ATP to the kinase is discussed in reference to a model which assumes the presence of two binding domains per subunit.  相似文献   

9.
Periodate-oxidized ADP and ATP (oADP and oATP) are substrates and affinity reagents for creatine kinase from rabbit skeletal muscle. oADP and oATP modified a lysine epsilon-amino group in the nucleotide-binding site of the enzyme. Complete inactivation is observed upon binding 2 moles oADP per 1 mole of the enzyme dimer. Modification with oADP is described by a liner dependence of the log of enzyme activity on time, testifying to a pseudo-first-order of the reaction. The reaction rate constant (ki = 8.10(3) min-1) and dissociation constant for the reversible enzyme-oADP complex (Kd = 62 microM) were determined. ADP protected the enzyme from inactivation and covalent binding of the analog, whereas oADP covalently bound to the enzyme was phosphorylated by phosphocreatine. The data obtained allow to suggest that the epsilon-amino group of a lysine residue of the active site is located in close proximity to ribose of ATP and ADP forming a complex with the enzyme. This group seems essential for correct orientation of the nucleotide polyphosphate chain in the enzyme active center, but take no immediate part in the transphosphorylation process.  相似文献   

10.
Pyridoxal kinase catalyses the phosphorylation of the vitamin B6. A human brain pyridoxal kinase cDNA was isolated, and the recombinant enzyme was overexpressed in E. coli as a fusion protein with maltose binding protein (MBP). Pure pyridoxal kinase exhibits a molecular mass of about 40 kDa when examined by SDS-PAGE and FPLC gel filtration. The recombinant enzyme is a monomer endowed with catalytic activity, indicating that the native quaternary structure of pyridoxal kinase is not a prerequisite for catalytic function. Zn2+ is the most effective divalent cation in the phosphorylation of pyridoxal, and the human enzyme has maximum catalytic activity in the narrow pH range of 5.5-6.0. The Km values for two substrates pyridoxal and ATP are 97 microM and 12 microM, respectively. In addition, the unfolding processes of the recombinant enzyme were monitored by circular dichroism. The values of the free energy change of unfolding (AGo = 1.2 kcal x mol(-1) x K(-1)) and the midpoint transition (1 M) suggested that the enzyme is more stable than ovine pyridoxal kinase against denaturation by guanidine hydrochloride. Intrinsic fluorescence spectra of the human enzyme from red-edge excitation and fluorescence quenching experiments showed that the tryptophanyl residues are not completely exposed and more accessible to neutral acrylamide than to the negatively charged iodide. The first complete set of catalytic and structural properties of human pyridoxal kinase provide valuable information for further biochemical studies on this enzyme.  相似文献   

11.
The fluorescence dye 1-anilinonaphthalene-8-sulfonate (ANS) was used as a probe of non-polar binding sites in 4-aminobutyrate aminotransferase. ANS binds to a single binding site of the dimeric protein with a Kd of 6 μM. Nanosecond emission anisotropy measurements were performed on the ANS-enzyme in an effort to detect independent rotation of the subunits in the native enzyme. The observed rotational correlation time (φ = 65 ns) corresponds to the rotation of a rather rigid dimeric structure. The microenvironment surrounding the natural probe pyridoxal-5-P covalently bound to the dimeric structure was explored using 31P-NMR at 72.86 MHz. In the native enzyme, the pyridoxal-5-P 31P-chemical shift is pH-independent, indicating that the phosphate group is well protected from the solvent. The correlation time determined from the 31P-spectrum of the aminotransferase exceeds the value calculated for the hydrated spherical model (φ = 40 ns). It is concluded that the phosphate of the pyridoxal-5-P molecule is rigidly bound to the active site of 4-aminobutyrate aminotransferase.  相似文献   

12.
The binding of pyridoxal analogues to the structural domains of pyridoxal kinase was studied by fluorescence spectroscopy and chromatographic techniques. Two fragments of 24 and 16 kDa, arising from limited proteolysis of the native enzyme, were separated by ion-exchange chromatography and used for binding studies with pyridoxal oxime. Fluorometric titrations yielded dissociation constants of 6 and 12.4 MicroM for pyridoxal oxime bound to the native enzyme and 24-kDa fragment, respectively. 4-(4-Azido-2-nitrophenyl)-pyridoxamine, a new photolabeling reagent, binds irreversibly to the kinase with concomitant loss of catalytic activity. The modified kinase (2.1 mol label/mol dimer) yields two fragments upon limited proteolysis with chymotrypsin. The two fragments were separated by reverse-phase HPLC and SDS/polyacrylamide gel electrophoresis. Radiolabeled ligand was detected only in the 24-kDa fragment. It is postulated that the pyridoxal binding site is located in the 24-kDa structural domain.  相似文献   

13.
A potent fluorescent ATP-like inhibitor of cAMP-dependent protein kinase   总被引:1,自引:0,他引:1  
The fluorescent ATP analogue 8-azido-2'-O-[14C]dansyl-ATP ([ 14C]AD-ATP) was used to probe the ATP-binding site in the catalytic (C) subunit of cAMP-dependent protein kinase. AD-ATP was found to inhibit the phosphotransferase activity of C subunit with extremely high specificity. Complete inhibition was observed when each mol of C subunit was covalently labeled with 1 mol of this fluorescent ATP analogue. The labeling can be accelerated by the presence of Mg2+ or Kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly), whereas high concentrations of ATP can almost completely protect the enzyme from AD-ATP. Detailed studies indicated that AD-ATP competes with ATP for binding to C subunit. Analysis of the kinetic data gave dissociation constants of 2.9 and 13 microM for AD-ATP and ATP bound to C subunit, respectively. AD-ATP has a fluorescence emission peak at 510 nm in pH 7.0 aqueous buffer containing 25% glycerol. After covalent binding to C subunit this emission peak shifts to 455 nm, which suggests that the label at ATP site is in an endogenous hydrophobic environment. Upon the binding of Mg2+ or Kemptide, the fluorescence of AD-ATP-labeled C subunit can be enhanced by 50 and 45%, respectively. This enhancement suggests that the binding of either the peptide substrate or Mg2+ induces conformational change at the active site of C subunit. Analysis of the fluorescence data shows that the values of Kd for Mg2+ and Kemptide bound to AD-ATP-labeled C subunit are 0.2 mM and 2.1 microM, respectively. The normal procedure for the preparation of the C subunit from the bovine heart muscle has been simplified to require only one-fifth of the usual working time to obtain the homogeneous enzyme with 70% yield from the crude extract.  相似文献   

14.
A series of 2-acylaminothiophene-3-carboxamides has been identified which exhibit potent inhibitory activity against the FLT3 tyrosine kinase. Compound 44 inhibits the isolated enzyme (IC50 = 0.027 microM) and blocks the proliferation of MV4-11 cells (IC50 = 0.41 microM). Structure-activity relationship studies within this series are described in the context of a proposed binding model within the ATP binding site of the enzyme.  相似文献   

15.
The three-dimensional structures of brain pyridoxal kinase and its complex with the nucleotide ATP have been elucidated in the dimeric form at 2.1 and 2.6 A, respectively. Results have shown that pyridoxal kinase, as an enzyme obeying random sequential kinetics in catalysis, does not possess a lid shape structure common to all kinases in the ribokinase superfamily. This finding has been shown to be in line with the condition that pyridoxal kinase binds substrates with variable sizes of chemical groups at position 4 of vitamin B(6) and its derivatives. In addition, the enzyme contains a 12-residue peptide loop in the active site for the prevention of premature hydrolysis of ATP. Conserved amino acid residues Asp(118) and Tyr(127) in the peptide loop could be moved to a position covering the nucleotide after its binding so that its chance to hydrolyze in the aqueous environment of the active site was reduced. With respect to the evolutionary trend of kinase enzymes, the existence of this loop in pyridoxal kinase could be classified as an independent category in the ribokinase superfamily according to the structural feature found and mechanism followed in catalysis.  相似文献   

16.
Pyridoxal kinase catalyzes the phosphorylation of pyridoxal (PL) to pyridoxal 5′-phosphate (PLP). A D235A variant shows 7-fold and 15-fold decreases in substrate affinity and activity, respectively. A D235N variant shows ∼2-fold decrease in both PL affinity and activity. The crystal structure of D235A (2.5 Å) shows bound ATP, PL and PLP, while D235N (2.3 Å) shows bound ATP and sulfate. These results document the role of Asp235 in PL kinase activity. The observation that the active site of PL kinase can accommodate both ATP and PLP suggests that formation of a ternary Enz·PLP·ATP complex could occur in the wild-type enzyme, consistent with severe MgATP substrate inhibition of PL kinase in the presence of PLP.  相似文献   

17.
The cGMP analogue 8-(2-carboxymethylthio)-cGMP (CMT-cGMP) was synthesized and its binding to cGMP-dependent protein kinase (cGMP kinase) was studied. CMT-cGMP bound at 4 degrees C with an over 1400-fold higher affinity to site 1 than to site 2 of the native enzyme with apparent Kd values of 4.1 nM and 5.9 microM, respectively. The apparent selectivity for site 1 was about threefold less with the autophosphorylated enzyme and about sixfold with the catalytically active fragment of cGMP kinase. The apparent selectivity was confirmed by determination of the dissociation of [3H]cGMP from cGMP kinase in the presence of 1 microM CMT-cGMP at 4 degrees C. The apparent site 1 selectivity was 250-fold at 30 degrees C under the conditions of the phosphotransferase assay. The apparent Kd values were 47 nM and 11.7 microM for site 1 and 2, respectively. CMT-cGMP stimulated the phosphotransferase activity of native and autophosphorylated cGMP kinase with Ka values of about 80 nM. About 60% of the total catalytic rate of cGMP kinase was obtained in the presence of 1 microM CMT-cGMP and 0.13 mM Kemptide. The apparent Km values for ATP and Kemptide were not affected. However, CMT-cGMP activated the enzyme to the same level as cGMP when 1.3 mM Kemptide was present. CMT-cGMP and cGMP inhibited cAMP-stimulated autophosphorylation of cGMP kinase with IC50 values of 0.7 microM and 2 microM, respectively. Neither compound stimulated autophosphorylation of cGMP kinase by itself. These results indicate that CMT-cGMP binds with high preference to site 1 of cGMP kinase and that occupation of site 1 may lead to expression of a partial enzyme activity.  相似文献   

18.
Nanosecond fluorescence spectroscopy was used to study the unique binding site of the retinol-binding protein (RBP) from human serum. At pH 7.4, the binding of retinol to RBP caused the following spectroscopic changes in the ligand: (a) an enhancement of the fluorescence decay time (gamma = 8 ns); and (b) an increase in the emission anisotropy (A = 0.29). Retinol in hexane has a fluorescent decay time of 4.2 ns and a low emission anisotropy (A = 0.02). The increase in the fluorescence decay time of bound retinol is not due to dielectric relaxation effects of polar groups, since nanosecond time-resolved emission spectra of either retinol in glycerol or retinol bound to RBP, failed to show any time-dependent shifts in emission maxima during the time period investigated 0 to 30 ns. The degree of rotational mobility of bound retinol was investigated by time emission anisotropy measurements. The observed rotational correlation time (theta = 7.2 ns) is consistent with a rigid compact macromolecule of 21,000 molecular weight.  相似文献   

19.
M Tagaya  K Yamano  T Fukui 《Biochemistry》1989,28(11):4670-4675
Pyridoxal kinase from pig liver has been purified 10,000-fold to apparent homogeneity. The enzyme is a dimer of subunits of Mr 32,000. The enzyme is strongly inhibited by the product pyridoxal 5'-phosphate. Liver pyridoxamine phosphate oxidase, another enzyme involved in the biosynthesis of pyridoxal 5'-phosphate, is also strongly inhibited by this compound [Wada, H., & Snell, E. E. (1961) J. Biol. Chem. 236, 2089-2095]. Thus, the biosynthesis of pyridoxal 5'-phosphate in the liver might be regulated by the product inhibition of both pyridoxamine phosphate oxidase and pyridoxal kinase. Kinetic studies revealed that the catalytic reaction of liver pyridoxal kinase follows an ordered mechanism in which pyridoxal and ATP bind to the enzyme and ADP and pyridoxal 5'-phosphate are released from the enzyme, in this order. Adenosine tetraphosphopyridoxal was found to be a slow-binding inhibitor of pyridoxal kinase. Pre-steady-state kinetics of the inhibition revealed that the inhibitor and the enzyme form an initial weak complex prior to the formation of a tighter and slowly reversing complex. The overall inhibition constant was 2.4 microM. ATP markedly protects the enzyme against time-dependent inhibition by the inhibitor, whereas another substrate pyridoxal affords no protection. By contrast, adenosine triphosphopyridoxal is not a slow-binding inhibitor of this enzyme.  相似文献   

20.
The binding of partially-folded mitochondrial malate dehydrogenase (mMDH) to GroEL was assessed by steady and nanosecond emission spectroscopy. Partially-folded intermediates of mMDH show significant residual secondary structure when examined by CD spectroscopy in the far UV. They bind the extrinsic fluorescent probe ANS and the protein-ANS complexes display a rotational correlation time of 19 ns. Similar rotational correlation time (phi = 18.6 ns) was determined for partially-folded species tagged with anthraniloyl. GroEL recognizes partially-folded species with a K(D) approximately 60 nM. The rotational correlation time of the complex, i.e., GroEL-mMDH-ANT, approaches a value of 280 ns in the absence of ATP. Reactivation of mMDH-ANT by addition of GroEL and ATP brings about a significant decrease in the observed rotational correlation time. The results indicate that partially-folded malate dehydrogenase is rigidly trapped by GroEL in the absence of ATP, whereas addition of ATP facilitates reactivation and release of folded conformations endowed with catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号