首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Z(cis)- and E(trans)-isomers of 1,3-dichloropropene (DCP), in confirmation of previous reports, caused dose-dependent increases in the numbers of reverse mutations in Salmonella typhimurium TA100 in the presence and absence of a 9000 X g supernatant fraction (S9) from the livers of Aroclor-treated rats. The relevance of these findings to mammals is uncertain, not least because of major differences in the metabolism of the DCPs in the microbial assay systems and in vivo. For example, (Z)-DCP is efficiently detoxified in mammals by the operation of a glutathione (GSH)-dependent S-alkyl transferase. It is possible that such detoxification could proceed only very slowly in the microbial assays because the concentrations of GSH could be severely rate-limiting even in those assays fortified by the addition of S9. The results obtained in the current study demonstrate a dramatic reduction in the microbial mutagenicity of both (Z)- and (E)-DCP when the concentration of GSH in the microbial assays was adjusted to a normal physiological concentration (5 mM). However, this protective action of GSH was at least as effective in the absence of S9 as in its presence, suggesting that it was not mediated by mammalian GSH transferase. There appears to be little or no GSH alkyl or aryl transferase in the cytosol of S. typhimurium TA100, but intracellular GSH is present at a concentration similar to that found in mammalian cells. Since the uncatalysed reaction between the DCPs and glutathione is relatively slow, the effect is not due simply to their destruction by GSH. It is possible that a physiological concentration of extracellular GSH maintains the intracellular GSH in a reduced form in which its nucleophilic thiol group competes effectively with the nucleophilic centres in the bacterial DNA for the haloalkenes. The current results highlight the efficiency of GSH-linked systems in affording protection against the genotoxic action of the DCPs. It may be presumed that their operation would exert a major limiting effect on the genotoxicity of (Z)- and (E)-DCP in mammals.  相似文献   

2.
(Z)-3-(fluoromethyl)phosphoenolpyruvate: synthesis and enzymatic studies   总被引:1,自引:0,他引:1  
P Wirsching  M H O'Leary 《Biochemistry》1988,27(4):1348-1355
(Z)-3-(Fluoromethyl)phosphoenolpyruvate has been synthesized in nine chemical steps from glyoxylic acid. The compound is stable at pH 3, but at pH 8 it decomposes within seconds to give 2-oxo-3-butenoate. When 3-(fluoromethyl)phosphoenolpyruvate is added to a solution of phosphoenolpyruvate carboxylase or pyruvate kinase, the enzyme is inactivated over the course of an hour. Identical kinetics of inactivation are observed whether the reaction is initiated by addition of 3-(fluoromethyl)-phosphoenolpyruvate, preformed 2-oxo-3-butenoate, or 4-fluoro-2-oxobutanoate (which rapidly undergoes elimination of fluoride ion to form 2-oxo-3-butenoate). The inactivating species in all cases is believed to be 2-oxo-3-butenoate. The inactivation is completely prevented by the presence of dithiothreitol, which reacts rapidly with 2-oxo-3-butenoate. Studies with competitive inhibitors of both enzymes indicate that inactivation does not occur at the active site.  相似文献   

3.
4.
(Z)-and (E)-phosphoenol-2-ketobutyrate were synthesized. [3-2H]-2-Ketobutyrates were formed from both isomers in the pyruvate kinase reaction in 2H2O and were converted to chiral propionates. Authentic (2S)-[2-2H]propionic acid was also prepared, and the optical rotatory dispersion curves of the propionates were compared. The rotation compared with standard propionate at 240 nm of sodium (2R)-[2-2H]propionate from the Z isomer was 47% (i.e., 53% was RS), and of (2S)-[2-2H]propionate from the E isomer was 29% (i.e., 71% was RS). Protonation at C-3 of the 2 si, 3 re face of the pseudosubstrates would have yielded (2R)- and (2S)-[2-2H]propionates from the Z and E analogues, respectively. An explanation offered for the nonstereoselective protonation that occurred is dissociation of the enol from the enzyme and subsequent random protonation in solution.  相似文献   

5.
Wireworms (Agriotes spp.) are sporadic but increasingly important pests of potatoes, sugar beet and cereals. Whilst effective chemical control is possible, the granular organophosphates normally require high rates of application and the seed dressings containing lindane (gamma‐HCH) have been withdrawn from use. The soil fumigant 1,3‐dichloropropene (1,3‐D as Telone II) and the granular nematicide fosthiazate (Nemathorin 10G) are currently used for the control of potato cyst nematodes. We investigated the effects of both of these chemicals on wireworms. Air‐vapour phase toxicities for 1,3‐D against wireworm were LD50 2.74 mg.litre.day and LD99 5.05 mg.litre.day. The in vitro soil phase toxicity was LD99 8.15 mg.litre.day. 1,3‐D soil phase activity against wireworm may be associated more with air‐vapour phase than a soil‐water phase activity. In glasshouse experiments 16.0 mg.litre.day of 1,3‐D gave 75% control. Fosthiazate, which is applied at approximately 2 μg g?1 of soil for potato cyst nematode control, achieved an LC50 at 3.20 μg g?1. In both in vitro and glasshouse studies 1,3‐dichloropropene showed high toxicity to wireworm at dosages below the current commercial application rate for potato cyst nematode control and fosthiazate also showed useful efficacy. These chemicals may therefore prove to be valuable additional tools for limiting initial wireworm plant damage or reducing wireworm populations.  相似文献   

6.
The catalytic mechanism of phosphoenolpyruvate (PEP) carboxylase from Zea mays has been studied using (Z)- and (E)-3-fluorophosphoenolpyruvate (F-PEP) as substrates. Both (Z)- and (E)-F-PEP partition between carboxylation to produce 3-fluorooxalacetate and hydrolysis to produce 3-fluoropyruvate. Carboxylation accounts for 3% of the reaction observed with (Z)-F-PEP, resulting in the formation of (R)-3-fluorooxalacetate, and for 86% of the reaction of (E)-F-PEP forming (S)-3-fluorooxalacetate. Carboxylation of F-PEP occurs on the 2-re face, which corresponds to the 2-si face of PEP. The partitioning of F-PEP between carboxylation and hydrolysis is insensitive to pH but varies with metal ion. Use of 18O-labeled bicarbonate produces phosphate that is multiply labeled with 18O; in addition, 18O is also incorporated into residual (Z)- and (E)-F-PEP. The 13(V/K) isotope effect on the carboxylation of F-PEP catalyzed by PEP carboxylase at pH 8.0, 25 degrees C, is 1.049 +/- 0.003 for (Z)-F-PEP and 1.009 +/- 0.006 for (E)-F-PEP. These results are consistent with a mechanism in which carboxylation of PEP occurs via attack of the enolate of pyruvate on CO2 rather than carboxy phosphate. In this mechanism phosphorylation of bicarbonate to give carboxy phosphate and decarboxylation of the latter are reversible steps. An irreversible step, however, precedes partitioning between carboxylation to give oxalacetate and release of CO2, which results in hydrolysis of PEP.  相似文献   

7.
《Insect Biochemistry》1984,14(3):279-284
Components of the sex pheromone of the female housefly, (Z)-9,10-epoxytricosane and (Z)-14-tricosen-10-one, are absent on the surface of newly emerged insects, first appear on females on day 2, and increase in amount to day 10. All body parts contain these components, with the legs and abdomen containing the largest amounts. The incorporation of [1-14C]acetate into the non-hydrocarbon cuticular (NHC) fraction, which includes 9,10-epoxytricosane and (Z)-14-tricosen-10-one is very low in newly emerged and one-day-old female houseflies and then increases dramatically from day 2 to 6. The major labelled components in this fraction are the C23 epoxide and ketone. The increased amounts and incorporation of [1-14C]acetate into the C23 epoxide and ketone correlate closely with the production of (Z)-9-tricosene. [9,10-3H](Z)-9-Tricosene is readily converted to oxygenated components in female insects giving rise to the C23 epoxide (85.5%), C23 ketone (13.0%) and more polar components (1.5%). Both female and male insects of all ages metabolize [9,10-3H](Z)-9-tricosene to the epoxide and ketone. All major body parts in both males and females metabolized (Z)-9-tricosene when it was applied to the surface of the insect, with the highest rate of metabolism observed by the legs of male insects.  相似文献   

8.
9.
The delta 5,9 fatty acids (5Z,9Z)-5,9-hexadecadienoic acid, (5Z,9Z)-5,9-nonadecadienoic acid, and (5Z,9Z)-5,9-eicosadienoic acid were synthesized for the first time in four steps (9-12% overall yield) starting from commercially available 2-(2-bromoethyl)-1,3-dioxolane. The synthetic approach provided enough material to corroborate the structure and stereochemistry of (5Z,9Z)-5,9-nonadecadienoic acid which was recently identified in the flowers of Malvaviscus arboreus (Malvaceae). The novel phospholipids 1-hexadecanoyl-2-[(5Z,9Z)-5,9-eicosadienoyl]-sn-glycer o-3-phosphocholine and 1-octadecanoyl-2-[(5Z,9Z)-5,9-eicosadienoyl]-sn- glycero-3-phosphocholine were also synthesized from commercially available L-alpha-phosphatidylcholine (egg yolk) and characterized by positive ion electrospray mass spectrometry. These are the first examples of unsymmetrical phospholipids with saturated fatty acids at the sn-1 position and delta 5,9 fatty acids at the sn-2 position.  相似文献   

10.
The stable isomers of 3- and 4-ring polycyclic aromatic sulfur heterocycles were tested for mutagenicity in the Ames standard plate incorporation test and a liquid pre-incubation modification of the Ames test. Of the 4 three-ring compounds tested, only naphtho[1,2-b]thiophene was mutagenic. Of the four-ring compounds, 7 of 13 were mutagenic in the standard Ames or pre-incubation Ames test. The highest activity for the 4-ring compounds was observed for phenanthrol[3,4-b]thiophene, a compound of approximately the same mutagenic potency in the Ames test as benzo[a]pyrene. The other active 4-ring compounds were of considerable less mutagenic potency than phenanthrol[3,4-b]thiophene. Mutagenicity for two of the 4-ring aromatic thiophenes could only be detected in the liquid pre-incubation Ames test. Salmonella typhimurium TA100 was the most sensitive strain to mutagenesis by these compounds, followed by TA98. All mutagenesis was indirect, requiring metabolic activation.  相似文献   

11.
Conjugated linoleic acid (CLA) isomers are present in human foods derived from milk or ruminant meat. To study their metabolism, (9Z,11E)-, (10E,12Z)- and (10Z,12Z)-[1-(14)C]-octadecadienoic acids with high radiochemical and isomeric purities (>98%) were prepared by stereoselective multi-step syntheses involving sequential substitution of 1,2-dichloro-ethene. In the case of the (9Z,11E) isomer, a first metal-catalyzed cross-coupling reaction between (E)-1,2-dichloro-ethene and 2-non-8-ynyloxy-tetrahydro-pyran, obtained from 7-bromo-heptan-1-ol, gave a conjugated chloroenyne. A second coupling reaction with hexylmagnesium bromide provided a heptadecenynyl derivative. Stereoselective reduction of the triple bond and bromination afforded (7E,9Z)-17-bromo-heptadeca-7,9-diene. Formation of the Grignard reagent and carbonation with 14CO(2) gave (9Z,11E)-[1-(14)C]-octadeca-9,11-dienoic acid (overall yield from 7-bromo-heptan-1-ol, 14.4%). (10E,12Z)- and (10Z,12Z)-[1-(14)C]-octadeca-10,12-dienoic acids were synthesized by the same methodology using 1-heptyne, 8-bromo-octan-1-ol and, respectively, (E)-1,2-dichloro-ethene and its (Z) isomer (overall yield from 8-bromo-octan-1-ol, 13.1% (10E,12Z); 17.2% (10Z,12Z)). Impurities (<2% if present) were identified as being (E,E) CLA isomers and were removed by RP-HPLC. Metabolism studies in animal are in progress.  相似文献   

12.
The cyclic monoterpene ketone (-)-carvone was metabolized by the plant pathogenic fungus Absidia glauca. After 4 days of incubation, the diol 10-hydroxy-(+)-neodihydrocarveol was formed. The absolute configuration and structure of the crystalline substance was identified by means of X-ray diffraction and by spectroscopic techniques (MS, IR and NMR). The antimicrobial activity of the substrate and metabolite was assayed with human pathogenic microorganisms.  相似文献   

13.
The long-chain aldehydes, (8Z,11Z,14Z)-8,11,14-heptadecatrienal, (7Z,10Z,13Z)-7,10,13-hexadecatrienal, and (8Z,11Z)-8,11-heptadecadienal, were concisely synthesized by using Grignard coupling, catalytic hydrogenation with the Lindlar catalyst, and oxidation with Dess-Martin periodinane as the key steps. Particularly, (8Z,11Z,14Z)-8,11,14-heptadecatrienal and (7Z,10Z,13Z)-7,10,13-hexadecatrienal both possessed a seaweed-like odor.  相似文献   

14.
The long-chain aldehydes, (8Z,11Z,14Z)-8,11,14-heptadecatrienal, (7Z,10Z,13Z)-7,10,13-hexadecatrienal, and (8Z,11Z)-8,11-heptadecadienal, were concisely synthesized by using Grignard coupling, catalytic hydrogenation with the Lindlar catalyst, and oxidation with Dess–Martin periodinane as the key steps. Particularly, (8Z,11Z,14Z)-8,11,14-heptadecatrienal and (7Z,10Z,13Z)-7,10,13-hexadecatrienal both possessed a seaweed-like odor.  相似文献   

15.
The absorption and circular dichroism (CD) spectra of (-)-2,2'-dimethyl-4,5-(1-naphthyl)-1,3-dioxolane (DND) were studied in the energy region 30,000 cm(-1) to 50,000 cm(-1). The DND ketal is treated as a naphthalene dimer and its spectra are interpreted in terms of a vibronic dimer model which includes the (1)L(a) and (1)B(b) states of the naphthalene chromophore. To fix the most stable conformation of DND molecule, the MNDO/AM1, RHF/6-31G, and SVWN5, BPW91 methods are employed with 6-31G and 6-31G(d',p') basis sets. All the methods are shown to yield the DND geometry that is entirely consistent with the CD and absorption spectra studied.  相似文献   

16.
Interaction of Orange G (OG) with bovine plasma albumin (BPA) has been investigated using NMR, UV-visible absorption, CD, and fluorescence techniques. The bound conformation of OG is a compact structure with N9-N10 bond in a non-planar syn conformation. The binding causes a decrease in the 478-nm absorption band of OG. The analysis of the binding isotherm generated from UV-visible absorption measurements gives a dissociation constant of 10 microM and stoichiometry 1:1 for BPA.OG complex. Dissociation constant is invariant in the pH range 5.0-8.0 and is approximately 20 times higher at pH 4.0 than its value at pH 7.0. Near and far UV-CD studies indicate alterations in the helical content and in the tertiary structure of the protein on complexation. The binding induces (-) and (+) CD at 335 nm and 465 nm, respectively. The binding also results into an increase in the steady state fluorescence anisotropy of OG without affecting emission maximum and quantum yield. Fluorescence data indicate that quenching of Trp fluorescence by OG is static in nature and OG selectively binds near Trp-135. Observation of similar rotational correlation time for BPA and BPA.OG complex indicates that the overall globular structure of BPA remains unaltered on binding despite certain internal rearrangement in the protein structure.  相似文献   

17.
Use of ionizing radiation is essential for the management of many human cancers, and therapeutic hyperthermia has been identified as a potent radiosensitizer. Radiation therapy combined with adjuvant hyperthermia represents a potential tool to provide outstanding local-regional control for refractory disease. (Z)-(±)-2-(N-Benzylindol-3-ylmethylene)quinuclidin-3-ol (2) and (Z)-(±)-2-(N-benzenesulfonylindol-3-ylmethylene)quinuclidin-3-ol (4) were initially identified as potent thermal sensitizers that could lower the threshold needed for thermal sensitivity to radiation treatment. To define the structural requirements of the molecule that are essential for thermal sensitization, we have synthesized and evaluated a series of (Z)-2-(N-benzylindol-3-ylmethylene)quinuclidin-3-one (9), and (Z)-(±)-2-(N-benzylindol-3-ylmethylene)quinuclidin-3-ol (10) analogs that incorporate a variety of substituents in both the indole and N-benzyl moieties. These systematic structure–activity relationship (SAR) studies were designed to further the development and optimization of potential clinically useful thermal sensitizing agents. The most potent analog was compound 10 (R1 = H, R2 = 4-Cl), which potently inhibited (93% inhibition at 50 μM) the growth of HT-29 cells after a 41 °C/2 h exposure.  相似文献   

18.
The use of the soil fumigant Telone II, which contains a mixture of cis- and trans-1,3-dichloropropene, to control plant-parasitic nematodes is a common agricultural practice for maximizing yields of various crops. The effectiveness of Telone II is limited by the rapid turnover of the dichloropropenes in the soil due to the presence of bacterial catabolic pathways, which may be of recent origin. The characterization of three enzymes in these pathways, trans-3-chloroacrylic acid dehalogenase (CaaD), cis-3-chloroacrylic acid dehalogenase (cis-CaaD), and malonate semialdehyde decarboxylase (MSAD), has uncovered intriguing catalytic mechanisms as well as a fascinating evolutionary lineage for these proteins. Sequence comparisons and mutagenesis studies revealed that all three enzymes belong to the tautomerase superfamily. Tautomerase superfamily members with known structures are characterized by a β-α-β structural fold. Moreover, they have a conserved N-terminal proline, which plays an important catalytic role. Mechanistic, NMR, and pH rate studies of the two dehalogenases, coupled with a crystal structure of CaaD inactivated by 3-bromopropiolate, indicate that they use a general acid/base mechanism to catalyze the conversion of their respective isomer of 3-chloroacrylate to malonate semialdehyde. The reaction is initiated by the conjugate addition of water to the C-2, C-3 double bond and is followed by the loss of HCl. MSAD processes malonate semialdehyde to acetaldehyde, and is the first identified decarboxylase in the tautomerase superfamily. The catalytic mechanism is not well defined but the N-terminal proline plays a prominent role and may function as a general acid catalyst, similar to its role in CaaD and cis-CaaD. These are the first structural and mechanistic details for tautomerase superfamily members that catalyze either a hydration or a decarboxylation reaction, rather than a tautomerization reaction, in which Pro-1 serves as a general acid catalyst rather than as a general base catalyst. The available information on the 1,3-dichloropropene catabolic enzymes allows speculation on the possible evolutionary origins of their activities.  相似文献   

19.
The synthesis and summary pharmacology of a novel thromboxane receptor antagonist 4(Z)-6-(2-o-chlorophenyl-4-o-hydroxyphenyl-1, 3-dioxan-cis-5-yl) hexenoic acid (3) is reported. Compound 3 was competitive and selective with pA2 values of 8.0 +/- 0.1 (rabbit) and 8.4 +/- 0.05 (rat) on smooth muscle preparations and 8.16 +/- 0.01 on human platelets. In vivo activity of 3 was demonstrated in a Konzett Rossler guinea pig model at 0.01 mg/kg p.o.  相似文献   

20.
(Z)-(1-fluoro-2-hydroxymethylcyclopropylmethyl)purines were designed, synthesized and evaluated their antiviral activity against poliovirus, HSV, and HIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号