首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jiang D  Schwarz H 《PloS one》2010,5(12):e15565

Background

Granulocytes and monocytes/macrophages differentiate from common myeloid progenitor cells. Granulocyte colony-stimulating factor (G-CSF) and CD137 (4-1BB, TNFRSF9) are growth and differentiation factors that induce granulocyte and macrophage survival and differentiation, respectively. This study describes the influence of G-CSF and recombinant CD137-Fc protein on myelopoiesis.

Methodology/Principal Findings

Both, G-CSF and CD137 protein support proliferation and survival of murine bone marrow cells. G-CSF enhances granulocyte numbers while CD137 protein enhances macrophage numbers. Both growth factors together give rise to more cells than each factor alone. Titration of G-CSF and CD137 protein dose-dependently changes the granulocyte/macrophage ratio in bone marrow cells. Both factors individually induce proliferation of hematopoietic progenitor cells (lin-, c-kit+) and differentiation to granulocytes and macrophages, respectively. The combination of G-CSF and CD137 protein further increases proliferation, and results in a higher number of macrophages than CD137 protein alone, and a lower number of granulocytes than G-CSF alone demonstrating that CD137 protein-induced monocytic differentiation is dominant over G-CSF-induced granulocytic differentiation. CD137 protein induces monocytic differentiation even in early hematopoietic progenitor cells, the common myeloid progenitors and the granulocyte macrophage progenitors.

Conclusions/Significance

This study confirms earlier data on the regulation of myelopoiesis by CD137 receptor - ligand interaction, and extends them by demonstrating the restriction of this growth promoting influence to the monocytic lineage.  相似文献   

2.

Background  

Granulocyte-colony stimulating factor (G-CSF) is known as a powerful regulator of white blood cell proliferation and differentiation in mammals. We, and others, have shown that G-CSF is effective in treating cerebral ischemia in rodents, both relating to infarct size as well as functional recovery. G-CSF and its receptor are expressed by neurons, and G-CSF regulates apoptosis and neurogenesis, providing a rational basis for its beneficial short- and long-term actions in ischemia. In addition, G-CSF may contribute to re-endothelialisation and arteriogenesis in the vasculature of the ischemic penumbra. In addition to these trophic effects, G-CSF is a potent neuroprotective factor reliably reducing infarct size in different stroke models.  相似文献   

3.
G-CSF (Granulocyte-colony stimulating factor) is a hematopoietic growth factor that has been known for 20 years, and has been named for its role in the proliferation and differentiation of cells of the myeloic lineage. We have uncovered a novel spectrum of activities of G-CSF in the central nervous system. G-CSF and its receptor are expressed by neurons in many brain regions, and are upregulated upon experimental stroke. In neurons, G-CSF acts anti-apoptotically by activating several protective pathways. In vivo, G-CSF decreases infarct volumes in acute stroke models in rodents. Moreover, G-CSF stimulates neuronal differentiation of adult neural stem cells in the brain, and improves long-term recovery in more chronic stroke models. Thus, G-CSF is a novel neurotrophic factor, and a highly attractive candidate for the treatment of neurodegenerative conditions. Here we discuss this new property of G-CSF in contrast to its known functions in the hematopoietic system, summarize data from other groups on G-CSF’s actions in cerebral ischemia, compare G-CSF to Erythropoietin (EPO) in the CNS and highlight clinical implications.  相似文献   

4.

Background  

Somatostatin receptor (SSTR) expression is positively correlated with tumor size and inversely correlated with epidermal growth factor receptor (ErbB) levels and tumor differentiation. In the present study, we compared SSTR1-5 and ErbB1-4 mRNA and protein expression in two breast cancer cell lines: MCF-7 (ER+) and MDA-MB-231 (ERα-).  相似文献   

5.

Background

The protective effects of granulocyte colony-stimulating factor (G-CSF) have been demonstrated in a variety of renal disease models. However, the influence of G-CSF on diabetic nephropathy (DN) remains to be examined. In this study, we investigated the effect of G-CSF on DN and its possible mechanisms in a rat model.

Methods

Otsuka Long-Evans Tokushima Fatty (OLETF) rats with early DN were administered G-CSF or saline intraperitoneally. Urine albumin creatinine ratio (UACR), creatinine clearance, mesangial matrix expansion, glomerular basement membrane (GBM) thickness, and podocyte foot process width (FPW) were measured. The levels of interleukin (IL)-1β, transforming growth factor (TGF)-β1, and type IV collagen genes expression in kidney tissue were also evaluated. To elucidate the mechanisms underlying G-CSF effects, we also assessed the expression of G-CSF receptor (G-CSFR) in glomeruli as well as mobilization of bone marrow (BM) cells to glomeruli using sex-mismatched BM transplantation.

Results

After four weeks of treatment, UACR was lower in the G-CSF treatment group than in the saline group (p<0.05), as were mesangial matrix expansion, GBM thickness, and FPW (p<0.05). In addition, the expression of TGF-β1 and type IV collagen and IL-1β levels was lower in the G-CSF treatment group (p<0.05). G-CSFR was not present in glomerular cells, and G-CSF treatment increased the number of BM-derived cells in glomeruli (p<0.05).

Conclusions

G-CSF can prevent the progression of DN in OLETF rats and its effects may be due to mobilization of BM cells rather than being a direct effect.  相似文献   

6.
7.

Introduction  

IFN-gamma inducible protein-10 (CXCL10), a member of the CXC chemokine family, and its receptor CXCR3 contribute to the recruitment of T cells from the blood stream into the inflamed joints and have a crucial role in perpetuating inflammation in rheumatoid arthritis (RA) synovial joints. Recently we showed the role of CXCL10 on receptor activator of nuclear factor kappa-B ligand (RANKL) expression in an animal model of RA and suggested the contribution to osteoclastogenesis. We tested the effects of CXCL10 on the expression of RANKL in RA synoviocytes and T cells, and we investigated which subunit of CXCR3 contributes to RANKL expression by CXCL10.  相似文献   

8.

Background  

Nerve growth factor and neurotrophin-3 are involved in the development of sympathetic neurons; however, whether brain derived neurotrophic factor also plays a role is not known. The purpose of this study was to determine whether BDNF and its receptor, TrkB, are expressed during the development of paravertebral sympathetic ganglia in vivo and to determine the effect of BDNF in vitro.  相似文献   

9.
10.

Background  

During development cell migration takes place prior to differentiation of many cell types. The chemokine receptor Cxcr4 and its ligand Sdf1 are implicated in migration of several cell lineages, including appendicular muscles.  相似文献   

11.

Background  

It has been reported that calf oocytes are less developmentally competent than oocytes obtained from adult cows. Bone morphogenetic protein 15 (BMP15) and growth and differentiation factor 9 (GDF9) play critical roles in folliculogenesis, follicular development and ovulation in mammalian ovaries. In the present study, we attempted to compare the expression patterns of BMP15 and GDF9 in the cells of calf and cow ovaries to determine a relationship between the level of these genes and the low developmental competence of calf oocytes.  相似文献   

12.

Background

Phosphatase and TENsin (PTEN) homolog is a negative regulator that takes part in IIS (insulin/insulin-like signaling) and Egfr (epidermal growth factor receptor) activation in Drosophila melanogaster. IIS and Egfr signaling events are also involved in the developmental process of queen and worker differentiation in honey bees (Apis mellifera). Here, we characterized the bee PTEN gene homologue for the first time and begin to explore its potential function during bee development and adult life.

Results

Honey bee PTEN is alternatively spliced, resulting in three splice variants. Next, we show that the expression of PTEN can be down-regulated by RNA interference (RNAi) in the larval stage, when female caste fate is determined. Relative to controls, we observed that RNAi efficacy is dependent on the amount of PTEN dsRNA that is delivered to larvae. For larvae fed queen or worker diets containing a high amount of PTEN dsRNA, PTEN knockdown was significant at a whole-body level but lethal. A lower dosage did not result in a significant gene down-regulation. Finally, we compared same-aged adult workers with different behavior: nursing vs. foraging. We show that between nurses and foragers, PTEN isoforms were differentially expressed within brain, ovary and fat body tissues. All isoforms were expressed at higher levels in the brain and ovaries of the foragers. In fat body, isoform B was expressed at higher level in the nurse bees.

Conclusion

Our results suggest that PTEN plays a central role during growth and development in queen- and worker-destined honey bees. In adult workers, moreover, tissue-specific patterns of PTEN isoform expression are correlated with differences in complex division of labor between same-aged individuals. Therefore, we propose that knowledge on the roles of IIS and Egfr activity in developmental and behavioral control may increase through studies of how PTEN functions can impact bee social phenotypes.  相似文献   

13.

Aims

Granulocyte colony stimulating factor (G-CSF), a new neuroprotective agent, binds to its specific receptors in the brain. In this study we hypothesized that at least a part of G-CSF's neuroprotective effect may be mediated through its interaction with other proteins in the brain.

Main methods

Using an immunoprecipitation (IP) kit, at first the antibody of G-CSF was covalently crosslinked to protein A/G agarose. Then the mouse brain or PC12 cell lysate mixed with G-CSF was added to the agarose beads plus antibody. After immunoaffinity isolation of target proteins, gel electrophoresis was performed and protein bands were identified using MALDI-TOF/TOF and MASCOT software.

Key findings

Our data show that G-CSF physically binds to cellular proteins like sodium/potassium-transporting ATPase, beta actin, aldehyde dehydrogenase, regucalcin and glutathione-s-transferase. These proteins are involved in membrane transportation, cell structure, signal transduction, enzymes involve in calcium related cell signaling and redox homeostasis.

Significance

Interaction of G-CSF with these proteins can explain some of its pharmacological effects in the CNS.  相似文献   

14.
15.
16.

Background  

Mechanicosensory mechanisms regulate cell differentiation during lung organogenesis. We have previously demonstrated that cystic fibrosis transmembrane conductance regulator (CFTR) was integral to stretch-induced growth and development and that transient expression of antisense-CFTR (ASCFTR) had negative effects on lung structure and function. In this study, we examined adult alveolar type II (ATII) cell phenotype after transient knock down of CFTR by adenovirus-directed in utero expression of ASCFTR in the fetal lung.  相似文献   

17.

Background  

Granulocyte colony-stimulating factor (G-CSF), a hematopoietic cytokine, was recently used to treat patients of acute myocardial infarction with beneficial effect. However, controversy exists as some patients developed re-stenosis and worsened condition post G-CSF delivery. This study presents a new disease model to study G-CSF induced cardiac thrombosis and delineate its possible mechanism. We used iron loading to mimic condition of chronic cardiac dysfunction and apply G-CSF to mice to test our hypothesis.  相似文献   

18.
19.

Background

Insulin-like growth factor-II (IGF-II) promotes cell proliferation and survival and plays an important role in normal fetal development and placental function. IGF-II binds both the insulin-like growth factor receptor (IGF-1R) and insulin receptor isoform A (IR-A) with high affinity. Interestingly both IGF-II and the IR-A are often upregulated in cancer and IGF-II acts via both receptors to promote cancer proliferation. There is relatively little known about the mechanism of ligand induced activation of the insulin (IR) and IGF-1R. The recently solved IR structure reveals a folded over dimer with two potential ligand binding pockets arising from residues on each receptor half. Site-directed mutagenesis has mapped receptor residues important for ligand binding to two separate sites within the ligand binding pocket and we have recently shown that the IGFs have two separate binding surfaces which interact with the receptor sites 1 and 2.

Methodology/Principal Findings

In this study we describe a series of partial IGF-1R and IR agonists generated by mutating Glu12 of IGF-II. By comparing receptor binding affinities, abilities to induce negative cooperativity and potencies in receptor activation, we provide evidence that residue Glu12 bridges the two receptor halves leading to receptor activation.

Conclusions/Significance

This study provides novel insight into the mechanism of receptor binding and activation by IGF-II, which may be important for the future development of inhibitors of its action for the treatment of cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号