共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil Phosphorus Fractionation during Forest Development on Landslide Scars in the Luquillo Mountains,Puerto Rico1 总被引:1,自引:0,他引:1
Jacqueline Frizano Arthur H. Johnson David R. Vann Frederick N. Scatena 《Biotropica》2002,34(1):17-26
Mineral soils from a chronosequence of landslide scars ranging in age from 1 to more than 55 years in a subtropical montane rain forest of eastern Puerto Rico were used to determine the rate at which labile P capital recovers during primary succession. Nine organic and inorganic soil P fractions were measured using the Hedley sequential extraction procedure. Deep soil cores (9 m) from a nearby site were also analyzed to determine the distribution of P fractions below the solum. Litterfall P was measured for two years in the landslide scars to estimate allochthonous litter P inputs, and published precipitation data were used to estimate annual atmospheric inputs of P to the recovering forests. In the upper solum (0–10 cm), organic matter increased with landslide age, as did resin‐Pi, labile P (defined here as resin‐Pi + HCO3‐Pi + HCO3‐Po) and total organic P. Occluded P decreased with increasing landslide age. No significant changes in P concentrations or pools were observed in 10 to 35 or in 35 to 60 cm depth intervals across the chronosequence. Labile soil P increased to approximately two‐thirds of the pre‐disturbance levels in the oldest landslide scar (>55 yr). Thus, plants, their associated microflora/fauna, and P inputs from off‐site substantially altered the distribution of soil P fractions during forest recovery. Across the chronosequence, the increase in labile P accumulated in soil and biomass appeared to be greater than the estimated allochthonous inputs from litter and precipitation, indicating that as the forest developed, some occluded P may have been released for use by soil biota. Resin‐Pi and labile P were correlated with soil organic matter content, suggesting, as in other highly weathered soils, organic matter accumulation and turnover are important in maintaining labile P pools. Primary mineral P (apatite) was scarce, even in deep soil cores. 相似文献
2.
Long-term studies are needed to understand the dynamics of tropical forests, particularly those subject to periodic disturbances such as hurricanes. We studied a flood plain Prestoea montana palm forest in the Luquillo Mountains of Puerto Rico over a 15-yr period (1980–1995), which included the passage of Hurricane Hugo in September 1989. The passage of the hurricane caused the dominant species to become more dominant and created low instantaneous tree mortality (1% of stems) and reductions in tree biomass (-16 Mg/ha/yr) and density, although not in basal area. Five years after the hurricane, the palm flood plain forest had exceeded its prehurricane aboveground tree biomass, tree density, and basal area. Aboveground tree biomass accumulated at a rate of 9.2 Mg/ha/yr, 76 percent of which was due to palms. Before the hurricane this rate was on the order of 3 Mg/ha/yr. Forest floor litter decreased to prehurricane levels (6.7 Mg/ha), within 5 yr, mostly due to the disappearance of woody litter. Thirteen tree species not represented in the canopy entered the forest by regeneration, and 2 species suffered almost 20 percent/yr mortality over a 5-yr period after the storm (floodplain average of 2%/yr). Delayed tree mortality was twice as high as instantaneous tree mortality after the storm and affected dicotyledonous trees more than it did palms. Regencration of dicotyledonous trees, palms, and tree ferns was influenced by a combination of factors including hydroperiod, light, and space. Redundancy Data Analysis showed that the area near the river channel was the most favorable for plant regeneration. Palm regeneration was higher in locations with longer hydroperiods, while regeneration of dicotyledonous trees was higher in areas with low risk of flooding. This study shows how a periodic disturbance provides long-term opportunities for species invasions and long-term ecosystem response at the patch scale of < 1 ha. 相似文献
3.
Hurricanes account for much of the spatial and temporal variation in forest productivity and soil organic matter pools in many forest ecosystems. In this study, we used an ecosystem level model, TOPOECO, to simulate the effects of Hurricane Hugo (18 September 1989) on spatial and temporal patterns of gross primary productivity (GPP), net primary productivity (NPP), soil organic carbon (SOC) and nitrogen over the entire Luquillo Experimental Forest (LEF), Puerto Rico, a tropical rainforest. Our simulation results indicated that simulated annual GPP increased by an average of 30% five years after Hugo in the Tabonuco forest at low elevations where there was a fast recovery of the canopy, whereas simulated GPP decreased by an average of 20% in the Palm and Dwarf forests at high elevations as a result of the slow recovery of the canopy. Simulated annual NPP in the Palm and Dwarf forests also did not recover to pre-Hugo levels within 5 years. Simulated storages of SOC, CO2 emission from decomposition of SOC and total soil nitrogen increased slightly but N mineralization rate increased significantly in all four vegetation types due to the massive input of plant materials from Hugo at low elevations and the slow decomposition at high elevations. 相似文献
4.
The interactions between water and soil nutrient availability in determining leaf nutritional composition and structural features were investigated in forests on serpentine in Maricao and Susua (Puerto Rico). These forests grow under contrasting rainfall regimes: Maricao is a wet forest located at altitudes above 500 m and receiving more than 2500 mm rainfall, while Susua is a humid forest located well below 500 m, with less than 1500 mm rainfall and a well defined dry season. Dominant tree species and soils were analysed for N, P, K, Ca, Mg and Ni. Soils can be differentiated according to their K content (higher in Maricao) and P contents (higher in Susua). Mature leaves of both forests have sclerophyllous characteristics as judged from the Specific Leaf Areas (<80 cm2 g-1) and low P contents. Leaf area development is strongly correlated with leaf N and P contents in both forests, but Maricao samples appear to be more limited by P availability. In concordance with soil values, the Susua leaf sample set has significantly higher contents of P, but lower contents of K when compared with the Maricao sample set. Analyses of soluble K, Ca, and Mg reveal strong physiological selectivity in the absorption of these cations. K/Ca and Ca/Mg ratios are markedly higher in the soluble leaf extracts than in the soil extracts. It seems that restriction to vegetation development in the serpentine areas investigated are more related to nutritional deficiencies and not to high contents of either Mg or Ni in the upper soil layers. Only two strong Ni accumulators were found, Cassine xylocarpa (1.2 mol Ni g-1 dry mass or 70 g g-1) from Susua, and Chionanthus domingensis (12.2 mol g-1, or about 700 g g-1) from Maricao. These species are not restricted to serpentine areas in Puerto Rico. 相似文献
5.
Decay rate and substrate quality of fine roots and foliage of two tropical tree species in the Luquillo Experimental Forest,Puerto Rico 总被引:10,自引:0,他引:10
Decomposition rates, initial chemical composition, and the relationship between initial chemistry and mass loss of fine roots and foliage were determined for two woody tropical species, Prestoea montana and Dacryodes excelsa, over a gradient of sites in two watersheds in the Luquillo Experimental Forest, Puerto Rico. At all locations, fine roots decayed significantly more slowly than foliage during the initial 6 months.Substrate quality of the initial tissue showed marked differences between roots and foliage when using cell wall chemistry, secondary chemistry and total elemental analysis as indices. Quantity of acid detergent fiber (ADF) (non-digestible cell wall fiber) and lignin content were higher for roots than leaves: D. excelsa roots had 55.3% ADF and 28.7% lignin while leaves had 36.2% ADF and 11.8% lignin; P. montana roots had 68.0% ADF and 26.8% lignin while leaves had 48.5% ADF and 16.1% lignin. Aluminum concentrations were higher in fine roots (843 mg kg–1 in D. excelsa, 1500 mg kg–1 in P. montana) than leaves (244 mg kg–1 in D. excelsa, 422 mg kg–1 in P. montana), while calcium concentrations were higher in foliage (5.5 mg g–1 in D. excelsa, 7.8 mg g–1 in P. montana) than roots (3.4 mg g–1 in D. excelsa, 3.1 mg g–1 in P. montana). Nitrogen did not show any trend with tissue or species type. A linear model between mass remaining after 6 months and initial tissue chemistry could be developed only for calcium (r2=0.64). 相似文献
6.
Understanding of N2O fluxes to the atmosphere is complicated by interactions between chemical and physical controls on both production and movement of the gas. To better understand how N2O production is controlled in the soil, we measured concentrations of N2O and of the proximal controllers on its production in soil water and soil air in a field study in the Rio Icacos basin of the Luquillo Experimental Forest, Puerto Rico. A toposequence (ridge, slope-ridge break, slope, slope-riparian break, riparian, and streambank) was used that has been previously characterized for groundwater chemistry and surface N2O fluxes. The proximal controls on N2O production include NO3
–, NH4
+, DOC, and O2. Nitrous oxide and O2 were measured in soil air and NO3
–, NH4
+, and DO were measured in soil water. Nitrate and DOC disappeared from soil solution at the slope-riparian interface, where soil N2O concentrations increased dramatically. Soil N2O concentrations continued to increase through the flood plain and the streambank. Nitrous oxide concentrations were highest in soil air probes that had intermediate O2 concentrations. Changes in N2O concentrations in groundwater and soil air in different environments along the catena appear to be controlled by O2 concentrations. In general, N processing in the unsaturated and saturated zones differs within each topographic position apparently due to differences in redox status. 相似文献
7.
How important is ecotypic differentiation along elevational gradients in the tropics? Reciprocal transplants of two shrubs, Clibadium erosum (Asteraceae) and Psychotria berteriana (Rubiaceae), and a palm, Preitoea acuminata var. montana (Palmaceae), were used to test for the effect of environment and population origin on growth and physiology in the Luquillo Experimental Forest of Puerto Rico. Two sites were used, one at Pico del Este (1000 m in cloud forest) and one at El Verde (350 m in lower montane rain forest). At the cloud forest site, plastic barriers were erected around a subset of the plants to examine if protection from wind affected survival or biomass accumulation. Survival of C. erosum and P. berteriana was not affected by site, population origin, or the presence of barriers. For P. acuminata var. montana, survival was higher for plants with barriers, but not affected by site and population origin. Plants of C. erosum and P. berteriana at El Verde grew larger than at Pico del Este, but there was no effect of population origin or barrier treatment on biomass accumulation for these species. For P. acuminata var. montana, there was no effect of environment, population origin, or barrier treatment on biomass accumulation. Light‐saturated photosynthetic rate (Amax) of C. erosum, P. berteriana, and P. acuminata var. montana, as well as leaf anatomical characteristics of C. erosum, were unaffected by environment, population origin, and barrier treatment. On balance, there seems to be little evidence of ecotypic differentiation in these species along the gradient. 相似文献
8.
Allan P. Drew 《Biotropica》1998,30(1):35-49
The growth phenology of Cyrilla racemiflora L., the dominant tree species of the montane rain forest, (subtropical lower montane rain forest, sensu Holdridge) of the Luquillo Mountains of Puerto Rico was studied intensively during 1989, and then semiannually through mid-1993 to determine the periodicity of changes in xylem structure. Four trees at 770 m were monitored for flowering, branch elongation, leaf litterfall, and xylem cell growth and differentiation in the lower stem, and these events were related to local seasonal patterns of rainfall and temperature. Hurricane Hugo defoliated study trees in September, 1989. Bud-break and branch elongation in March, 1989 were followed by earlywood xylem cell production in the lower stem in April and the onset of flowering in May. Leaf litterfall was greatest between April and June, coinciding with peak branch growth and new leaf formation. Latewood xylem was produced in December. The general phenological pattern was synchronized between trees and over study years. Vessel diameter and density were monitored along with thickness of earlywood and latewood and the former converted to vessel lumen area, a measure of xylem conductance capacity. Annual growth rings were formed with periods of earlywood and latewood production coinciding with traditional summer (rainy) and winter (dry) seasons, respectively, in the Luquillo Mountains. Hurricane defoliation was followed by heavy flowering in 1990, a year of reduced branch elongation and annual xylem ring width, and was associated with maximum vessel lumen area, as was flowering in 1989, prior to the hurricane. Hurricane Hugo provided a perturbation that, through its elicited stress response, allowed for the demonstration of the interplay between flowering, branching, structural growth of xylem, and xylem function. 相似文献
9.
A comparative account of the microbiological characteristics of soils under natural forest,grassland and cropfield from Eastern India 总被引:4,自引:0,他引:4
Microbiological and physico-chemical characteristics of tropical forest, grassland and cropfield soils from India were investigated.
The study revealed that the conversion of natural forest led to a reduction of soil organic C (26–36%), total N (26–35%),
total P (33–44%), microfungal biomass (44–66%) and total microbial biomass C, N and P (25–60%) over a period of 30–50 years.
Comparative analysis of microbial activity in terms of basal soil respiration revealed maximum activity in the forest and
minimum in the cropfield soil. Analysis of microbial metabolic respiratory activity (qCO2) indicated relatively greater respiratory loss of CO2-C per unit microbial biomass in cropfield and grassland than in forest soil. Considering the importance of the microbial
component in soil, we conclude that the conversion of the tropical forest to different land uses leads to the loss of biological
stability of the soil. 相似文献
10.
Jannette A. Macdonald PauL. Eggleton† David E. Bignell‡ Francis Forzi§ David Fowler 《Global Change Biology》1998,4(4):409-418
Methane fluxes were measured, using static chambers, across a disturbance gradient in a West African semi-deciduous humid forest. Soil-feeding termite biomass was simultaneously determined, in an attempt to examine its influence on the net soil-atmosphere exchange of CH4. CH4 emission rates from individual termite species were determined under laboratory conditions, permitting the gross production of CH4 to be compared with net fluxes to the atmosphere. Both net CH4 oxidation(-) and emission were observed, and CH4 fluxes ranged from – 24.6 to 40.7 ng m–2 s–1. A statistically significant relationship between termite biomass and CH4 flux was observed across the forested sites such that: CH4 flux (ng m–2 s–1) = 4.95 × termite biomass (gm–2)–10.9 (P < 0.001). Rates of CH4 oxidation were on average 60% smaller at the clearfelled and Terminalia plantation sites than at the near-primary forest site. Two of the disturbed sites were net CH4 sources during one of the sampling periods. Disturbance of tropical forests, resulting in a decrease in the CH4 sink capacity of the soil, may therefore increase the contribution of termite-derived CH4 to the atmosphere. Measurements from the mounds of the soil-feeding termites Thoracotermes macrothorax and Cubitermes fungifaber from the old plantation site gave a CH4 emission of 636 and 53.4 ng s–1 mound–1, respectively. The forest floor surrounding the mounds was sampled in three concentric bands. Around the mound of T. macrothorax the soil was a net source of CH4 estimated to contribute a further 148 ng s–1. Soil surrounding the mound of C. fungifaber was mostly a net sink. The mounds of soil-feeding termites are point sources of CH4, which at the landscape scale may exceed the general sink capacity of the soil, to an extent dependent on seasonal variations in soil moisture and level of disturbance. 相似文献
11.
Effects of forest clearing and succession on the carbon and nitrogen content of soils in Puerto Rico and US Virgin Islands 总被引:8,自引:0,他引:8
Soil samples from mature and secondary forests and agricultural sites in three subtropical life zones of Puerto Rico and the
US Virgin Islands were collected to determine the effects of forest conversion to agriculture and succession on soil organic
carbon (C) and nitrogen (N) contents. Site characteristics that may affect soil C and N (slope, elevation, aspect, and texture)
were as uniform as possible. Carbon contents (to 50 cm depth or bedrock) of cultivated sites, as a percent of corresponding
mature forests, were lower in the wet (44%) and moist (31%) than in the dry (86%) life zones whereas N contents were relatively
high regardless of life zone (60–130% of the mature forests). Conversion of forests to pasture resulted in less soil C and
N loss than conversion to crops. The time for recovery of soil C and N during succession was approximately the same in all
three life zones, about 40–50 yr for C about 15–20 yr for N. However, the rate of recovery of soil C was faster in the wet
and moist life zone, whereas N appeared to recover faster in the dry life zone. Evidence for loss of soil C during cultivation
and gain during succession to soil depths of 50–100 cm is presented. 相似文献
12.
Physicochemical and biological processes affecting the recovery of exogenously applied ferulic acid from tropical forest soils 总被引:1,自引:1,他引:1
Barry R. Dalton 《Plant and Soil》1989,115(1):13-22
Ferulic acid (4-hydroxy-3-methoxycinnamic acid) is found in both plants and soils, and some evidence suggests its involvement in biochemical interactions between plants (allelopathy) and other organisms living in the soil. Knowledge of the processes affecting the concentrations of such potential allelochemicals in soil is essential if we are to understand their roles in the soil environment. It was the intent of this study to address the effects that soil physicochemical and biological processes have on the recovery of exogenously applied ferulic acid from tropical forest soils. Soil extractants used in this study are thought to recover potentially bioavailable concentrations of applied ferulic acid. Water and sodium acetate extractions of soil (immediately and after one and two days) were employed in the recovery of ferulic acid (added at a rate of 5.15 mmoles kg–1) from steam-sterilized and non-sterilized forest soil materials. Sterilization of soil was used to isolate physicochemical effects from microbial effects on ferulic acid. Results indicate some sterilization treatment effects on the immediate recovery of ferulic acid. Physicochemical and biological processes of soils decreased the recovery of ferulic acid. The immediate recovery of ferulic acid from non-sterile soils is inversely related to the % organic carbon present in the soils. Certain soils have the ability to trap ferulic acid molecules for subsequent release into the soil-solution phase. Furthermore, results suggest that microbial degradation of ferulic acid may only occur in the solution (bulk) phase; ferulic acid molecules thought to be bound to soil surfaces appear to be protected from degradation.Use of trade names in this publication does not imply endorsement by the Organization for Tropical Studies, North Carolina State University or the Savannah River Ecology Laboratory of the products named nor criticism of similar ones not mentioned. 相似文献
13.
Vélez-Juarbe J Brochu CA Santos H 《Proceedings. Biological sciences / The Royal Society》2007,274(1615):1245-1254
The Indian gharial (Gavialis gangeticus) is not found in saltwater, but the geographical distribution of fossil relatives suggests a derivation from ancestors that lived in, or were at least able to withstand, saline conditions. Here, we describe a new Oligocene gharial, Aktiogavialis puertoricensis, from deltaic-coastal deposits of northern Puerto Rico. It is related to a clade of Neogene gharials otherwise restricted to South America. Its geological and geographical settings, along with its phylogenetic relationships, are consistent with two scenarios: (i) that a single trans-Atlantic dispersal event during the Tertiary explains the South American Neogene gharial assemblage and (ii) that stem gharials were coastal animals and their current restriction to freshwater settings is a comparatively recent environmental shift for the group. This discovery highlights the importance of including fossil information in a phylogenetic context when assessing the ecological history of modern organisms. 相似文献
14.
In order to assess the recovery potential of tropical freshwater communities after disturbance, we performed an experimental study on the effects of exposure conditions and durations of storage on hatching of rotifer resting eggs in sediment. Well-mixed surface sediment samples from Mai Khao peat swamp on Phuket Island, Thailand, were stored under three conditions (cold –4 °C & dark: CD; ambient –32–42 °C & dark: AD; and ambient & daylight conditions: AL), for different periods of time (1, 2, 4, 6, 12, 18 and 24 months).The number of species hatching from the sediment was significantly affected by treatment for both short- (1–6 months) and long-term (6–20 months) exposure. Significant effects of short- and long-term exposure within treatments were also present. Both factors interacted significantly. Regarding numbers of specimens hatching, no short-term effects of differences in treatment condition were found, but increasing the duration did have an effect. Significant effects of treatment occurred after 6 months, in addition to prolonged effects of duration. Again, both factors interacted significantly. These experiments indicate that exposure time has a strong impact on the viability of resting eggs, whereas, an effect of exposure condition appears only after 6 months. So, recovery of rotifer communities from resident sediment egg banks in disturbed peat swamps can only be effectively attained when restoration occurs within a relatively short period after perturbation. 相似文献
15.
Anthropogenic alterations of natural hydrology are common in wetlands and often increase water permanence, converting ephemeral habitats into permanent ones. Since aquatic organisms segregate strongly along hydroperiod gradients, added water permanence caused by canals can dramatically change the structure of aquatic communities. We examined the impact of canals on the abundance and structure of wetland communities in South Florida, USA. We sampled fishes and macroinvertebrates from marsh transects originating at canals in the central and southern Everglades. Density of all aquatic organisms sampled increased in the immediate proximity of canals, but was accompanied by few compositional changes based on analysis of relative abundance. Large fish ( >8 cm), small fish ( <8 cm) and macroinvertebrates ( >5 mm) increased in density within 5 m of canals. This pattern was most pronounced in the dry season, suggesting that canals may serve as dry-down refugia. Increases in aquatic animal density closely matched gradients of phosphorus enrichment that decreased with distance from canals. Thus, the most apparent impact of canals on adjacent marsh communities was as conduits for nutrients that stimulated local productivity; any impact of their role as sources of increased sources of predators was not apparent. The effect of predation close to canals was overcompensated by increased secondary productivity and/or immigration toward areas adjacent to canals in the dry season. Alternatively, the consumptive effect of predatory fishes using canals as dry-season refuges is very small or spread over the expanse of marshes with open access to canals. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. 相似文献
16.
We estimated trophic position and carbon source for three consumers (Florida gar, Lepisosteus platyrhincus; eastern mosquitofish, Gambusia holbrooki; and riverine grass shrimp, Palaemonetes paludosus) from 20 sites representing gradients of productivity and hydrological disturbance in the southern Florida Everglades, U.S.A.
We characterized gross primary productivity at each site using light/dark bottle incubation and stem density of emergent vascular
plants. We also documented nutrient availability as total phosphorus (TP) in floc and periphyton, and the density of small
fishes. Hydrological disturbance was characterized as the time since a site was last dried and the average number of days
per year the sites were inundated for the previous 10 years. Food-web attributes were estimated in both the wet and dry seasons
by analysis of δ15N (trophic position) and δ13C (food-web carbon source) from 702 samples of aquatic consumers. An index of carbon source was derived from a two-member
mixing model with Seminole ramshorn snails (Planorbella
duryi) as a basal grazing consumer and scuds (amphipods Hyallela azteca) as a basal detritivore. Snails yielded carbon isotopic values similar to green algae and diatoms, while carbon values of
scuds were similar to bulk periphyton and floc; carbon isotopic values of cyanobacteria were enriched in C13 compared to all consumers examined. A carbon source similar to scuds dominated at all but one study site, and though the
relative contribution of scud-like and snail-like carbon sources was variable, there was no evidence that these contributions
were a function of abiotic factors or season. Gar consistently displayed the highest estimated trophic position of the consumers
studied, with mosquitofish feeding at a slightly lower level, and grass shrimp feeding at the lowest level. Trophic position
was not correlated with any nutrient or productivity parameter, but did increase for grass shrimp and mosquitofish as the
time following droughts increased. Trophic position of Florida gar was positively correlated with emergent plant stem density. 相似文献
17.
The enclosed Baltic Sea, one of the world’s largest brackish water basins, resembles a large estuary with steep horizontal and vertical environmental gradients. Thus, salinities range from 25 to 30 ppt in the Danish Sound area in the south to 1–3 ppt in the inner reaches of the Gulfs of Bothnia and Finland, and a persistent pycnocline in the Baltic basin causes stagnation of bottom waters for long periods, with periodic hypoxia/anoxia as a consequence, over an area covering up to 100 000 km2. Further, climatic variation from boreal to subarctic causes additional stress on the ecosystem. In recent decades, eutrophication and pollution have also significantly affected the biota of the Baltic Sea. The soft bottom infauna is poor in terms of species composition, and functional complexity is considered to be low. This paper examines the estuarine soft bottom infauna of the Baltic Sea along some principal environmental gradients using a functional-group perspective. We have used the functional-group concept (primarily feeding type, mobility and microhabitat), designed for polychaetes by 22 , to analyze and illustrate if and how the environmental gradients are reflected in the zoobenthos. A total of 25 functional groups were identified, forming clines from complex functional communities in the south and west, towards functionally poor assemblages in the north and east. The shift in functional groups indicates a loss of carnivores, tentaculate sessile organisms, and burrowers from areas beyond the Baltic and its marine approaches towards the inner bays. On the other hand, suspension feeders and surface deposit feeders increase in importance. In the northernmost areas of the Baltic only 1–3 functional groups are found, compared to 8–20 in the south. 相似文献
18.
Brian Wilson 《Ecological Management & Restoration》2002,3(3):211-219
Summary Surface soil conditions were assessed under three tree species on a property near Armidale on the Northern Tablelands of NSW. In both a stocked and adjacent destocked paddock, five trees each of three eucalypt species: Eucalyptus melliodora, Eucalyptus blakelyi and Eucalyptus nova‐anglica, were selected. Soil samples were collected (depth 0–10 cm) along transects 20 m in length running from beneath the tree canopy progressively outwards into the open paddock. Six additional transects were also sampled outside the influence of the trees. Soil properties at a distance from the trees differed little between the stocked and destocked paddock with only a slight acidification in the stocked paddock. However, soil properties around the scattered trees showed considerable variation between stocked and destocked equivalents and most notably in a systematic pattern with distance from the trees themselves. For example, bulk density increased significantly, whereas soil pH, carbon, nitrogen and extractable phosphorus contents all decreased significantly with distance from the trees. However, stocking and camping had modified some of these soil properties. In the stocked paddock, the systematic change in nitrogen and phosphorus with distance from the trees was less clear and the degree of dispersion of the data was largest at the most heavily camped site. In this paddock, bulk density was also generally higher whereas pH, carbon and nitrogen contents were lower compared with the destocked equivalent. Extractable phosphorus content was also higher around the trees in the stocked paddock especially where camping activity was most intense. It is concluded that, although animal camping can modify their effects, scattered trees have a beneficial effect on soil properties and in this respect they have value in the grazing system from a soil conservation perspective. 相似文献
19.
20.
BACKGROUND AND AIMS: Dalbergia nigra, known as Brazilian rosewood, is an endangered tree species restricted to the Brazilian Atlantic Forest and has been intensively logged for five centuries due to its high-quality wood. The objective of the present study was to assess the genetic variation and structure in adults and saplings of the species from a large reserve of the Atlantic Forest, the Rio Doce State Park, and from two small surrounding fragments, one better preserved and another with a high degree of anthropogenic disturbance. METHODS: Analyses of genetic variation and structure were conducted by studying allozyme markers. Seven putative enzymatic loci were resolved, five of them being polymorphic. KEY RESULTS: The mean numbers of alleles per locus (A) were 1.93 and 1.73, while the percentages of polymorphic loci (P) were 93 and 73 % for adults and saplings, respectively. Saplings from the fragment with high anthropogenic disturbance exhibited the lowest values of A and P. The fragment that constitutes a conservation area exhibited genetic variation similar to the population from the large reserve. The observed (H(o)) and expected (H(e)) heterozygosities were not significantly different among the three populations. Only sapling populations showed F(ST) values (divergence among populations) significantly different from zero over all studied loci. The fragment with high anthropogenic disturbance exhibited considerable genetic divergence in relation to the above-cited populations. CONCLUSIONS: The evaluated populations displayed mean levels of genetic variation intermediate to those expected for narrow and widespread species. The results suggest that fragments with similar area and geographical distance from a large protected reserve can exhibit different levels of genetic variation, depending on the degree of anthropogenic disturbance. The considerable genetic variation in the protected fragment points to the importance of adequate conservation of small fragments for the preservation of genetic variation in D. nigra. 相似文献