首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enterostatin (VPDPR), an anorexigenic peptide derived from the amino terminus of procolipase, significantly inhibited analgesia induced by the mu-opioid agonist morphine (5 mg/kg, s.c.) after i.c.v. administration to mice at a dose of 100 nmol. On the other hand, VPDPR (approximately 200 nmol, i.c.v.) did not attenuate analgesia induced by the kappa-opioid agonist D-Phe-D-Phe-D-Nle-D-Arg-NH2 (100 microg/mouse, i.c.v.) or delta-opioid agonist DTLET (4 nmol/mouse, i.c.v.). VPDPR (100 nmol, i.c.v.) significantly improved amnesia induced by scopolamine (0.2 mg/kg, i.p.) in mice. However, VPDPR did not enhance memory in normal mice at the same dose.  相似文献   

2.
Enterostatin (APGPR) found in the gastrointestinal tract and brain is an anorectic pentapeptide. We found that APGPR inhibited morphine-induced analgesia after intracerebroventricular administration in mice at a dose of 10nmol/mouse. The anti-analgesic effect of APGPR was inhibited by pretreatment with lorglumide and LY225910, antagonists for cholecystokinin 1 (CCK1) and cholecystokinin 2 (CCK2) receptors, respectively. The anti-analgesic effect of APGPR may be mediated by CCK release, since APGPR does not have affinity for CCK receptors.  相似文献   

3.
Enterostatin (VPDPR), an anorexigenic peptide derived from the amino terminus of procolipase, significantly inhibited analgesia induced by the μ-opioidagonist morphine (5 mg/kg, s.c.) after i.c.v. administration to mice at a dose of 100 nmol. On the other hand, VPDPR (~200 nmol, i.c.v.) did not attenuate analgesia induced by the κ-opioid agonist D-Phe-D-Phe-D-Nle-D-Arg-NH2 (100 μg/mouse, i.c.v.) or δ-opioid agonist DTLET (4 nmol/mouse, i.c.v.). VPDPR (100 nmol, i.c.v.) significantly improved amnesia induced by scopolamine (0.2 mg/kg, i.p.) in mice. However, VPDPR did not enhance memory in normal mice at the same dose.  相似文献   

4.
The dehydroepiandrosterone sulfate (DHEAS) effect on stress-reactivity and the role of mu-opioid receptors in it, were studied. The experiments were carried out in male rats. The shuttling in single or in multiple (19 days, for 1 hour a day) regimes served as the experimental stress influences. The estimation of stress-reactivity was carried out by the plasma corticosterone level. It had been shown that the subcutaneous injection of dehydroepiandrosterone sulfate in rats reduced the stress-induced increase in corticosterone levels under the multiple influences, whereas naltrexone (0.1 mg/kg, for 20 min before DHEAS injection) blocked this effect. There were no effects of DHEAS or naltrexone on corticosterone levels under the single stress influences.  相似文献   

5.
Complement C3a is an anti-opioid peptide, having anti-analgesic and anti-amnesic effects after intracerebroventricular administration. However, the peptide is inactive after oral administration. Orally active C3a agonist peptide was designed based on the structure of oryzatensin, a C3a agonist peptide derived from rice albumin. Tyr-Pro-Leu-Pro-Arg, a pentapeptide at the carboxyl terminus of oryzatensin is the minimally essential structure for exerting C3a activity. Due to the affinity for mu-opioid receptor, both oryzatensin and Tyr-Pro-Leu-Pro-Arg showed analgesia after intracerebroventricular administration in mice which was blocked by the opioid antagonist naloxone. Tyr-Pro-Leu-Pro-Arg lost opioid activity by substitution the amino terminus tyrosine with other hydrophobic residues. Among the newly designed peptides, Trp-Pro-Leu-Pro-Arg was found to possess the strongest C3a activity. The peptide antagonized morphine-induced analgesia at 300 mg/kg after oral administration and also improved scopolamine- and ischemia-induced amnesia in a step-through passive avoidance test.  相似文献   

6.
Takenaka Y  Shimano T  Mori T  Hou IC  Ohinata K  Yoshikawa M 《Peptides》2008,29(12):2175-2178
Enterostatin (APGPR), an anorectic pentapeptide derived from the amino terminus of procolipase, significantly reduced serum cholesterol levels after oral administration at a dose of 100 mg/kg for 3 days in mice fed a high-cholesterol-cholic acid diet. The hypocholesterolemic effect of APGPR was inhibited by pretreatment with lorglumide, an antagonist for cholecystokinin 1 (CCK(1)) receptor, even though APGPR does not have any affinity for CCK(1) receptors. Similarly, the hypocholesterolemic activity of VPDPR, an APGPR analogue, was blocked by lorglumide. These results suggest that the hypocholesterolemic effects of APGPR and VPDPR are mediated by a CCK(1) receptor-dependent mechanism.  相似文献   

7.
We found that enterostatin (VPDPR), an anorexigenic peptide for a high-fat diet, significantly reduces serum cholesterol levels after oral administration of 100 mg/kg for 3 days in mice fed a high cholesterol-cholic acid diet. DPR, a peptide fragment of VPDPR, also had hypocholesterolemic activity at a dose of 50 mg/kg. Food intake was not suppressed under these dietary conditions. Fecal excretion of cholesterol and bile acids was increased significantly by both VPDPR and DPR. Interestingly, DPR induced hypocholesterolemic effects just two hours after a single oral administration at a dose of 100 mg/kg.  相似文献   

8.
We found that enterostatin (VPDPR), an anorexigenic peptide for a high-fat diet, significantly reduces serum cholesterol levels after oral administration of 100 mg/kg for 3 days in mice fed a high cholesterol-cholic acid diet. DPR, a peptide fragment of VPDPR, also had hypocholesterolemic activity at a dose of 50 mg/kg. Food intake was not suppressed under these dietary conditions. Fecal excretion of cholesterol and bile acids was increased significantly by both VPDPR and DPR. Interestingly, DPR induced hypocholesterolemic effects just two hours after a single oral administration at a dose of 100 mg/kg.  相似文献   

9.
Imamura M  Debata C  Prasad C 《Peptides》1999,20(1):133-139
Enterostatins, pentapeptides represented at the amino-terminus of the procolipase molecule, are derived following tryptic cleavage of the procolipase molecule in the lumen of the gut. Val-Pro-Asp-Pro-Arg or VPDPR is one such enterostatin. Despite pharmacologic studies suggesting a role for VPDPR in appetite regulation and insulin secretion, the function of this endogenous peptide has been impossible to discern due to the lack of a suitable assay. Using polyclonal antibodies raised against VPDPR and different chromatographic methods, we examined the nature and distribution of enterostatin-like immunoreactivity in rat plasma. The results reported here show for the first time the presence of VPDPR-like immunoreactivity in rat plasma. Further characterization of the plasma VPDPR-like immunoreactivity revealed that a) it is not due to APGPR, VPGPR, or VPDPR but to another peptide similar to VPDPR, and b) plasma VPDPR-like immunoreactivity may circulate bound to large carrier proteins.  相似文献   

10.
A Albinsson  G Andersson 《Life sciences》1992,51(19):1535-1544
Amperozide is an atypical antipsychotic drug with high affinity for the serotonin 5-HT2 receptor but with low affinity for the dopamine D1 and D2 receptors. Amperozide dose-dependently increased the level of plasma corticocorticosterone in the rat. The effect of amperozide on plasma corticosterone was not inhibited by pretreatment with the 5-HT1A receptor antagonist pindolol or the 5-HT2 receptor antagonist ritanserin. Nor was it inhibited by the dopamine D2 receptor antagonist haloperidol. In contrast to ritanserin, amperozide did not antagonize plasma corticosterone elevation elicited by the serotonin receptor agonist MK-212. Similar to the serotonin uptake inhibitor fluoxetine, amperozide (0.5 mg/kg) significantly (p < 0.05) blocked p-chloroamphetamine (PCA) induced corticosterone release 4 and 16 hrs after amperozide administration. However, amperozide significantly increased the plasma corticosterone concentration also in rats pretreated with parachlorophenylalanine (PCPA). These data suggest that other mechanisms than a 5-HT uptake inhibitory effect are involved in the acute stimulation of corticosterone by amperozide.  相似文献   

11.
Psychological stress is associated with immunosuppression in both humans and animals. Although it was well established that psychological stressors stimulate the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system, resulting in the release of various hormones and neurotransmitters, the mechanisms underlying these phenomena are poorly understood. In this study, mu-opioid receptor knockout (MORKO) mice were used to investigate whether the mu-opioid receptor mediates the immunosuppression induced by restraint stress. Our results showed that wild-type (WT) mice subjected to chronic 12-h daily restraint stress for 2 days exhibited a significant decrease in splenocyte number with a substantial increase in apoptosis and CD95 (Fas/APO-1) expression of splenocytes. The effects are essentially abolished in MORKO mice. Furthermore, inhibition of splenic lymphocyte proliferation, IL-2, and IFN-gamma production induced by restraint stress in WT mice was also significantly abolished in MORKO mice. Interestingly, both stressed WT and MORKO mice showed a significant elevation in plasma corticosterone and pituitary proopiomelanocortin mRNA expression, although the increase was significantly lower in MORKO mice. Adrenalectomy did not reverse restraint stress-induced immunosuppression in WT mice. These data clearly established that the mu-opioid receptor is involved in restraint stress-induced immune alterations via a mechanism of apoptotic cell death, and that the effect is not mediated exclusively through the glucocorticoid pathway.  相似文献   

12.
Tzeng TF  Lo CY  Cheng JT  Liu IM 《Life sciences》2007,80(16):1508-1516
In the current study we investigated the effect of mu-opioid receptor activation on insulin sensitivity. In obese Zucker rats, an intravenous injection of loperamide (18 microg/kg, three times daily for 3 days) decreased plasma glucose levels and the glucose-insulin index. Both effects of loperamide were subsequently inhibited by the administration of 10 microg/kg of naloxone or 10 microg/kg of naloxonazine, doses sufficient to block mu-opioid receptors. Other metabolic defects characteristic of obese Zucker rats, such as defects in insulin signaling, the decreased expression of insulin receptor substrate (IRS)-1, the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3 kinase), and the glucose transporter subtype 4 (GLUT 4), and the reduction of phosphorylation in IRS-1 or Akt serine, were also studied. These defects were all reversed by loperamide treatment in a dose which overcame mu-opioid receptor blockade. Moreover, loss of tolbutamide-induced plasma glucose lowering action (10 mg/kg) in wild-type mice given a fructose-rich diet was markedly delayed by repeated treatment with loperamide; however, this delay induced by loperamide did not occur in mu-opioid receptor knockout mice. These results indicate an important role of peripheral mu-opioid receptors in the loperamide-induced improvement of insulin sensitivity. Our results suggest that activation of peripheral mu-opioid receptors can ameliorate insulin resistance in animals, and provide a new target for therapy of insulin resistance.  相似文献   

13.
Mitragynine is an indole alkaloid isolated from the Thai medicinal plant Mitragyna speciosa that is reported to have opioid agonistic properties. The 9-demethyl analogue of mitragynine, 9-hydroxycorynantheidine, is synthesized from mitragynine. 9-Hydroxycorynantheidine inhibited electrically stimulated guinea-pig ileum contraction, but its maximum inhibition was weaker than that of mitragynine and its effect was antagonized by naloxone, suggesting that 9-hydroxycorynantheidine possesses partial agonist properties on opioid receptors. Receptor binding assays revealed that 9-hydroxycorynantheidine has high affinity for mu-opioid receptors. In an assay of the guinea-pig ileum, naloxone shifted the concentration-response curves for [D-Ala(2), N-MePhe(4), Gly-ol(5)]-enkephalin (DAMGO), (5alpha,7alpha,8beta)-(+)-N-Methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide (U69593) and 9-hydroxycorynantheidine to the right in a competitive manner. The pA(2) values of naloxone against 9-hydroxycorynantheidine and DAMGO were very similar, but not that against U69593. As indicated by the two assay systems, the opioid effect of 9-hydroxycorynantheidine is selective for the mu-opioid receptor. 9-Hydroxycorynantheidine shifted the concentration-response curve for DAMGO slightly to the right. Pretreatment with the mu-opioid selective and irreversible antagonist beta-funaltorexamine hydrochloride (beta-FNA) shifted the concentration-response curve for DAMGO to the right without affecting the maximum response. On the other hand, beta-FNA did not affect the curve for 9-hydroxycorynantheidine, but decreased the maximum response because of the lack of spare receptors. These studies suggest that 9-hydroxycorynantheidine has partial agonist properties on mu-opioid receptors in the guinea-pig ileum.  相似文献   

14.
15.
Opioids reduce the cholinergic responses to electrical field stimulation (EFS) in guinea pig and canine airways by a prejunctional effect. We determined whether a similar effect operates in human airways in vitro. [D-Ala2-NMePhe4-Gly-ol5]enkephalin (DAMGO) (10(-8)-10(-6) M), a selective mu-opioid receptor agonist, inhibited the response to EFS in a dose- and frequency-dependent manner. DAMGO (10(-6) M) produced 86% inhibition at 0.5 Hz and 38% inhibition at 4 Hz, but at 32 Hz there was no significant inhibition. Another selective mu-opioid receptor agonist H-Tyr-D-Arg-Gly-Phe(4-NO2)-Pro-NH2 diacetate (BW 443C) also inhibited responses to EFS, producing 57.7% inhibition at 4 Hz at a concentration of 10(-6) M. The inhibitory effect on EFS was blocked by the opioid receptor antagonist naloxone (10(-5) M), indicating that opioid receptors are involved. DAMGO (10(-6) M) had no effect on the contractile response to exogenous acetylcholine, indicating a prejunctional effect. We conclude that mu-opioid agonists inhibit cholinergic neurotransmission in human airways in vitro, and this could have therapeutic potential in the treatment of airway disease.  相似文献   

16.
Enterostatin (VPDPR), having anoretic and hypocholesterolemic activities, and its homologue LPYPR, a hypocholesterolemic peptide found in the glycinin A5A4B3 subunit, were introduced into the corresponding site (TNGPQ) of the proglycinin A1aB1b subunit by site-directed mutagenesis. Modified proglycinins were expressed in E. coli and recovered from the insoluble fraction. VPDPR and LPYPR were released by the action of chymotrypsin and trypsin as expected. The overall yields of purified VPDPR and LPYPR were 40% and 62%, respectively.  相似文献   

17.
Corticosterone plays an important role in feeding behavior. However, its mechanism remains unclear. Therefore, the present study aimed to investigate the effect of corticosterone on feeding behavior. In this study, cumulative food intake was increased by acute corticosterone administration in a dose‐dependent manner. Administration of the 5‐HT2c receptor agonist m‐chlorophenylpiperazin (mCPP) reversed the effect of corticosterone on food intake. The anorectic effects of mCPP were also blocked by the 5‐HT2c receptor antagonist RS102221 in corticosterone‐treated mice. Both corticosterone and mCPP increased c‐Fos expression in hypothalamic nuclei, but not the nucleus of the solitary tract. RS102221 inhibited c‐Fos expression induced by mCPP, but not corticosterone. In addition, mCPP had little effect on TH and POMC levels in the hypothalamus. Furthermore, mCPP antagonized decreasing effect of the leptin produced by corticosterone. Taken together, our findings suggest that 5‐HT2c receptors and leptin may be involved in the effects of corticosterone‐induced hyperphagia.  相似文献   

18.
Effect of glucocorticoid deficiency on susceptibility to gastric mucosal injury by non-steroid anti-inflammatory drugs (NSAID) was studied in rats. The corticosterone production was inhibited by a single large dose of cortisol as well as by an adrenalectomy. The drop in the corticosterone production prompted gastric erosions induced by the NSAID. Replacing corticosterone prevented the effects of cortisol pretreatment of adrenalectomy on NSAID-induced gastric erosions. The data obtained reveal a gastroprotective effect of endogenous glucocorticoids.  相似文献   

19.
Dopamine inhibits angiotensin II-stimulated aldosterone production by an effect on the late phase of biosynthesis. This study was undertaken to investigate the effect of dopamine on potassium-stimulated aldosterone biosynthesis in adrenal glomerulosa cells in vitro. As potassium concentrations were increased from 0 to 12 mM, aldosterone production increased up to 6 mM potassium, but not beyond this concentration. Dopamine (10(-5)M) inhibited the aldosterone response to potassium. The effect of potassium on pregnenolone accumulation (the early phase of aldosterone biosynthesis) was assessed in cells treated with trilostane which inhibits the conversion of pregnenolone onward to aldosterone. Increasing potassium concentrations up to 12 mM gave increasing pregnenolone accumulation; however dopamine did not influence this effect. The potassium stimulated conversion of corticosterone to aldosterone, an index of activity in the late phase of aldosterone biosynthesis, was assessed using aminoglutethimide to prevent cholesterol side-chain cleavage. Significantly more corticosterone was converted to aldosterone at 6 mM potassium than at 0 or 12 mM; dopamine inhibited the conversion of corticosterone to aldosterone at 6 mM potassium. These data indicate that dopamine inhibits potassium-stimulated aldosterone production by an effect restricted to the late phase of the aldosterone biosynthetic pathway similar to its previously established effect on angiotensin II-stimulated aldosterone biosynthesis.  相似文献   

20.
The antinociceptive mechanisms of the selective mu-opioid receptor agonists [D-Ala2,NMePhe4,Gly(ol)5]enkephalin (DAMGO), H-Tyr-D-Arg-Phe-beta-Ala-OH (TAPA) or H-Tyr-D-Arg-Phe-beta-Ala-NH2 (TAPA-NH2) against substance P (SP)- or capsaicin-elicited nociceptive behaviors was investigated in mice. DAMGO, TAPA or TAPA-NH2 given intrathecally inhibited the nociceptive behaviors elicited by intrathecally administered SP or capsaicin, and these antinociceptive effects were completely eliminated by intrathecal co-administration with D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), a selective mu-opioid receptor antagonist. Pretreatment subcutaneously with naloxonazine, a selective mu1-opioid receptor antagonist, partially attenuated the antinociceptive effect of TAPA-NH2, but not DAMGO and TAPA, against SP. However, the antinociception induced by TAPA, but not DAMGO and TAPA-NH2, against capsaicin was significantly inhibited by naloxonazine. On the other hand, co-administration intrathecally with Tyr-D-Pro-Trp-Gly-NH2 (D-Pro2-Tyr-W-MIF-1), a selective mu2-opioid receptor antagonist, significantly attenuated the antinociceptive effects of DAMGO, but not TAPA and TAPA-NH2, against capsaicin, while the antinociceptions induced by three opioid peptides against SP were significantly inhibited by D-Pro2-Tyr-W-MIF-1. These results suggest that differential inhibitory mechanisms on pre- and postsynaptic sites in the spinal cord contribute to the antinociceptive effects of the three mu-opioid peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号