首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Effects of 5-hydroxytryptamine on cat spinal motoneurons   总被引:2,自引:0,他引:2  
The effects of 5-hydroxytryptamine (5-HT) on spinal motoneurons were examined in pentobarbital-anaesthetized cats and in nonanaesthetized decerebrate cats by intracellular recording and extracellular iontophoresis of 5-HT. 5-HT first induced a depolarization and then a long-lasting hyperpolarization (up to 60 min) with unchanged input resistance. The slow hyperpolarization was prevented by the 5-HT antagonists ketanserin (5-HT2), methysergide, and spiperone (5-HT1,2) and mimicked by the agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (5-HT2). The post-spike after hyperpolarization was enhanced after application of 5-HT. A depolarization was induce by the 5-HT agonists (+/-)-8-hydroxy-(2)-(di-n-propylamino)tetralin (5-HT1A) and 1-(2-methoxyphenyl)piperazine (5-HT1). Possible mechanisms for the 5-HT-induced hyperpolarization and its intracellular medication are discussed. The present data suggest multiple effects of 5-HT on cat spinal motoneurons.  相似文献   

3.
Acute experiments were carried out on immobilized cats under superficial pentobarbital (20 mg/kg) anesthesia to investigate the parameters of the rhythmic discharge of neurons in the motor cortex in the area of representation of the forelimb, evoked by passage of steps of depolarizing current through an intracellular microelectrode. The steady-state repetitive firing rate was found to be a linear function of the strength of the current passing through the membrane; no secondary range was discovered. The slope of the "discharge frequency — current" function (f/I=k) was 18±10.7 spikes/sec/nA. The regression line between the slope of the "discharge frequency-current" function and the input resistance (Rin) drawn by the method of least squares had the form k=0.68, Rin=–11.3. Two types of curve of adaptation of the discharge frequency to the stimulating current were found: exponential and undamped oscillations. The curve of latent period of the first action potential in the rhythmic discharge and the length of the first interspike interval as a function of current strength was shown to be a hyperbola, but with different scales along the abscissa. The connection between the properties of the dendritic tree and the parameters of the rhythmic discharge of cortical neurons is discussed.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 476–482, September–October, 1976.  相似文献   

4.
5.
Experiments on cats anesthetized with chloralose showed that repetitive stimulation of the locus coeruleus is accompanied by a decrease in IPSPs evoked by stimulation of flexor reflex afferents in extensor motoneurons. The effect appeared 600 msec after the beginning of stimulation and reached its maximum after 1500–2000 msec. Repetitive stimulation of the locus coeruleus did not change the membrane potential and did not affect EPSPs or IPSPs evoked by stimulation of low-threshold muscle afferents; EPSPs due to activation of high-threshold cutaneous and muscle afferents likewise remained unchanged. Repetitive stimulation of more central regions of the brain stem was accompanied not only by a decrease in IPSPs evoked by stimulation of flexor reflex afferents in extensor motoneurons, but also by a decrease in amplitude of EPSPs arising in response to stimulation of these same afferents in flexor motoneurons. These effects were not connected with activation of monoaminergic structures, for unlike effects arising during stimulation of the locus coeruleus, they were also found in previously reserpinized animals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 1, pp. 51–59, January–February, 1982.  相似文献   

6.
Inositol 1,4,5-trisphosphate (IP3) was injected iontophoretically into cat spinal motoneurons in pentobarbital-anaesthetized cats and nonanaesthetized, decerebrate cats. Injections of IP3 induced a long-lasting, reproducible hyperpolarization without consistent change in input resistance. The peak amplitude of post-spike afterhyperpolarization (AHP) was significantly increased by IP3 when the membrane potential was adjusted to the control level. Intracellular injections of Ca2+ chelators, which depressed the Ca2(+)-activated AHP, prevented the IP3-induced long-lasting hyperpolarization, suggesting that IP3 acts by a Ca2(+)-dependent mechanism. Intracellular injections of myo-inositol did not consistently induce hyperpolarizations. Also intracellular injections of Li+, which blocks IP3 catabolism, did not prevent the IP3-evoked hyperpolarization. These data suggest that IP3 itself, rather than its breakdown product myo-inositol, is mainly responsible for the hyperpolarizing effect. Possible mechanisms for the IP3-induced hyperpolarization are discussed.  相似文献   

7.
A stochastic version of Kernell's (1968, 1972) model with cumulative afterhyperpolarization (AHP) was simulated. A characteristic of the model is that the AHP is the result of an increased potassium conductance (g K) that is time-dependent but not voltage-dependent. Quantal synaptic inputs are assumed to be the only source of interspike interval variability. The model reproduces many features of the steady-state discharge of peripheral vestibular afferents, provided that firing rates are higher than 40 spikes/s. Among the results accounted for are the interspike interval statistics occurring during natural stimulation, their alteration by externally applied galvanic currents and the increase in the interspike interval following an interposed shock. Empirical studies show that some vestibular afferents have a regular spacing of action potentials, others an irregular spacing (Goldberg and Fernández 1971b; Fernández and Goldberg 1976). Irregularly discharging afferents have a higher sensitivity to externally applied galvanic currents than do regular afferents (Goldberg et al. 1984). To explain the relation between galvanic sensitivity and discharge regularity requires the assumption that neurons differ in both their synaptic noise (v) and the slopes of their postspike voltage trajectories (d v/dt). The more irregular the neuron's discharge at a given firing frequency, the greater is v and the smaller is d v/dt. Of the two factors, d v/dt is estimated to be four times more influential in determining discharge regularity across the afferent population. The shortcomings of the model are considered, as are possible remedies. Our conclusions are compared to previous discussions of mechanisms responsible for differences in the discharge regularity of vestibular afferents.  相似文献   

8.
A study was made of the effect of reciprocal inhibition on individual firing motoneurons in the extensor carpi ulnaris and soleus muscle in human subjects. Peristimulus histograms (PSH) were plotted at different average frequency of motoneuron firing ( ) and the change in duration of interspike intervals (ISI) was analyzed. For reciprocal inhibition, as for other types of inhibition, is a factor in the effectiveness of motoneuron inhibition. The duration of inhibition apparent in the PSH, the sizes of zones of inhibition effectiveness in the ISIs and lengthening of the intervals are dependent on . For all motoneurons, the low range is most favorable for effective inhibition. The dependence of effectiveness of a volley on the time of its arrival within the ISI is also analyzed.Institute for Problems of Information Transmission, Russian Academy of Sciences, Moscow. Translated from Neirofiziologiya, Vol. 24, No. 6, pp. 643–653, November–December, 1992.  相似文献   

9.
Experiments were performed to test whether motoneurons in the plantaris and medial gastrocnemius muscles of the cat are arranged in the spinal cord according to their sizes. It was found that motoneurons are randomly distributed with respect to size in their motor nuclei. Evidence is also presented that motoneuron density in these pools is irregular, and that there is considerable variability of position of medial gastrocnemius and plantaris motor pools from animal to animal.  相似文献   

10.
This paper describes a model for the generation of repetitive firing patterns in single neurons to be used as a module in large-scale network simulation studies. The model is based on the combination of extended versions of Hill's model for accomodation and of Kernell's model for adaptation. Both digital computer and electronic circuit realizations of the model are presented. The model is shown to produce strength-duration curves for accomodation which are compatible with available data from real neurons. Both “high ceiling” and “low ceiling” cell types can be matched by adjusting parameters in the model. An equation relating steady-state firing rate to amplitude of applied steady current is presented which includes the accumulation of potassium conductance changes with repetitive firing. The occurence of phasic and tonic responses to step stimulation is mapped in the parameter space of the model. Several representative response patterns to irregular inputs are presented.  相似文献   

11.
Klyachko VA  Ahern GP  Jackson MB 《Neuron》2001,31(6):1015-1025
cGMP has long been suspected to play a role in synaptic plasticity, but the inaccessibility of nerve terminals to electrical recording has impeded tests of this hypothesis. In posterior pituitary nerve terminals, nitric oxide enhanced Ca(2+)-activated K+ channel activity by activating guanylate cyclase and PKG. This enhancement occurred only at depolarized potentials, so the spike threshold remained unaltered but the afterhyperpolarization became larger. During spike trains, the enhanced afterhyperpolarization promoted Na+ channel recovery from inactivation, thus reducing action potential failures and allowing more Ca(2+) to enter. Activating guanylate cyclase, either with applied nitric oxide, or with physiological stimulation to activate nitric oxide synthase, increased action potential firing. Thus, the cGMP/nitric oxide cascade generates a short-term, use-dependent enhancement of release.  相似文献   

12.
Potentials of motoneurons of the lower segments of the spinal cord were recorded with the aid of intracellular microelectrodes in experiments on cats with induced tetanus produced by injection of tetanus toxin (1500–2000 mouse LD50) into the extensor muscles of the left shin. Neither afferent volleys of impulses in cutaneous and muscle nerves, nor antidromic volleys in the corresponding ventral roots, produced IPSPs in motoneurons of the extremity into which toxin was injected. The form both of antidromic peak potentials and of monosynaptic EPSPs in motoneurons in which IPSPs were blocked by tetanus toxin did not differ from the form of corresponding potentials of motoneurons in normal cats. The values of threshold depolarization for peak discharges during synaptic and direct stimulation were equal in tetanus and control motoneurons. Resistance and time constant values of the membrane in "tetanus" motoneurons did not differ from the corresponding values for "control" motoneurons.N. I. Pirogov Second Medical Institute, Moscow. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 25–34, July–August, 1969.  相似文献   

13.
In cats under pentobarbital anaesthesia, intramotoneuronal administrations of 4-aminopyridine significantly prolong the falling phase of the antidromic action potential but have much less effect on the orthodromic action potential. 4-aminopyridine probably blocks the fast K channels involved in the repolarization of the membrane and indirectly activates ionic channels through enhancement of synaptic transmission, also suggested by the potentiation of excitatory postsynaptic potentials. In many cells, 4-aminopyridine depresses the amplitude and prolongs the time course of the after-hyperpolarization; therefore 4-aminopyridine may also partly block Ca2+-activated K+ channels.  相似文献   

14.
W K Riker  N J Russell  S Stolc 《Life sciences》1973,13(8):1069-1075
Bullfrog ganglion cells in Cs+-Ringer's solution developed postjunctional repetitive spike responses to single preganglionic stimuli but not to single antidromic or direct stimuli. This action of Cs+ is equivalent to that of the neostigmine-like drugs and is apparently generated by primary action on presynaptic nerve terminals. Alterations of K+ and Na+ currents in the nerve terminal membrane could be the underlying mechanism.  相似文献   

15.
Bhatt DH  McLean DL  Hale ME  Fetcho JR 《Neuron》2007,53(1):91-102
Animals can produce movements of widely varying speed and strength by changing the recruitment of motoneurons according to the well-known size principle. Much less is known about patterns of recruitment in the spinal interneurons that control motoneurons because of the difficulties of monitoring activity simultaneously in multiple interneurons of an identified class. Here we use electrophysiology in combination with in vivo calcium imaging of groups of identified excitatory spinal interneurons in larval zebrafish to explore how they are recruited during different forms of the escape response that fish use to avoid predators. Our evidence indicates that escape movements are graded largely by differences in the level of activity within an active pool of interneurons rather than by the recruitment of an inactive subset.  相似文献   

16.
Enrichment of spinal cord cell cultures with motoneurons   总被引:7,自引:2,他引:7  
Spinal cord cell cultures contain several types of neurons. Two methods are described for enriching such cultures with motoneurons (defined here simply as cholinergic cells that are capable of innervating muscle). In the first method, 7-day embryonic chick spinal cord neurons were separated according to size by 1 g velocity sedimentation. It is assumed that cholinergic motoneurons are among the largest cells present at this stage. The spinal cords were dissociated vigorously so that 95-98% of the cells in the initial suspension were isolated from one another. Cells in leading fractions (large cell fractions: LCFs) contain about seven times as much choline acetyltransferase (CAT) activity per unit cytoplasm as do cells in trailing fractions (small cell fractions: SCFs). Muscle cultures seeded with LCFs develop 10-70 times as much CAT as cultures seeded with SCFs and six times as much CAT as cultures seeded with control (unfractionated) spinal cord cells. More than 20% of the large neurons in LCF-muscle cultures innervate nearby myotubes. In the second method, neurons were gently dissociated from 4-day embryonic spinal cords and maintained in vitro. This approach is based on earlier observations that cholinergic neurons are among the first cells to withdraw form the mitotic cycle in the developing chick embryo (Hamburger, V. 1948. J. Comp. Neurol. 88:221-283; and Levi-Montalcini, R. 1950. J. Morphol. 86:253-283). 4-Day spinal cord-muscle cultures develop three times as much CAT as do 7-day spinal cord-muscle plates, prepared in the same (gentle) manner. More than 50% of the relatively large 4-day neurons innervate nearby myotubes. Thus, both methods are useful first steps toward the complete isolation of motoneurons. Both methods should facilitate study of the development of cholinergic neurons and of nerve-muscle synapse formation.  相似文献   

17.
18.
Monosynaptic testing of excitability in firing triceps surae muscle motoneurons activated during volitional contraction was performed using a technique for recording potentials from single motor units and by producing H-reflex. Motoneuronal excitability was assessed according to level of firing index. Motoneuronal firing index decreased during transition from a low background rhythmic firing rate of less than 6 spikes/sec to one of 6–8 spikes/sec. It hardly changed with a further rise in rate to 12 spikes/sec. The dependence between firing index and spike rate are put down to changes occurring in motoneuronal excitability during the interspike interval. Findings indicate that in the low frequency range of motoneuronal firing characteristic of natural muscle contraction, discharge rate may be considered one of the factors determining excitability in the motoneuron and hence its transmission qualities.Institute of Problems in Information Transmission, Academy of Sciences of the USSR. Translated from Neirofiziologiya, Vol. 19, No. 2, pp. 210–216, March–April, 1987.  相似文献   

19.
By means of intracellular recording technique, studies have been made of the electrical activity of -motoneurons of the seventh lumbar segment in cats with chronic rhizotomy of the dorsal root fibers (L4-S2). Postsynaptic potentials of the reticular formation of the midbrain, medulla, and ventral columns of the spinal cord were compared with the reactions recorded from nonoperated animals; these potentials were evoked by stimulation of the motor cortex, red nucleus, and Deuters' nuclei. Deafferentiation did not cause statistically reliable variations in the amplitude of the descending monosynaptic E PSPs. Extrapyramidal short-latent disynaptic E PSPs and IPSPs remained also practically unchanged, while the responses of deafferented motoneurons to cortico-spinal impulses were considerably facilitated; this effect was retained in pyramidal cats. Deafferentation was not accompanied by variations in the dependence of the discharge frequency on the depolarizing current strength or by the variation in the threshold and input resistance of the motoneuron membranes. This suggests that intensification of the pyramidal synaptic action upon deafferented motoneurons was caused by the variation on the intermediate neuronal level.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 35–46, July–August, 1969.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号