首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IHF (integration host factor) mutants exhibit asynchronous initiation of chromosome replication from oriC as determined from flow cytometric analysis of cultures where RNA synthesis was inhibited with rifampicin. However, the run-out kinetics of chromosome replication in ihf mutants shows that they continue to produce oriCs for some time in the absence of RNA synthesis resulting in a twofold increase in the oriC per mass ratio. An ihf dnaA double mutant did not exhibit this continued increase of the oriC per mass ratio. This indicates that ihf mutants can initiate replication from oriC in a rifampicin-resistant initiation mode but requires fully functional DnaA protein. The origin per mass ratio, determined by a quantitative Southern blotting technique, showed that the ihf mutants had an origin per mass ratio that was 60% of the wild type although it had a normal DnaA protein concentration. This shows that the initiation mass was substantially higher in the ihf mutants. The oriC per terminus ratio, which was also determined by Southern blotting, was very low in the ihf mutant, although it grew with the same doubling times as the wild-type strain. This indicates that cells lacking IHF replicate their chromosome(s) very fast.  相似文献   

2.
The sdrA224 mutants of Escherichia coli K-12, capable of continued DNA replication in the absence of protein synthesis (stable DNA replication), tolerate inactivation of the dnaA gene by insertion of transposon Tn10. Furthermore, oriC, the origin of E. coli chromosome replication, can be deleted from the chromosome of sdrA mutants without loss of viability. The results suggest the presence of a second, normally repressed, initiation system for chromosome replication alternative to the 'normal' dnaA+ oriC+-dependent initiation mechanism.  相似文献   

3.
Molecular clones of Borrelia burgdorferi, aetiologic agent of Lyme borreliosis, were isolated and analysed by DNA sequence determination. This procedure yielded B. burgdorferi homologues of gidA, gyrB, gyrA, ftsA and ftsZ. The genes were located on the physical map of the B. burgdorferi linear chromosome. Also mapped were the genes fla and p60 while dnaA was mapped using a heterologous probe. gyrA and gyrB were found to be in tandem and were mapped, along with dnaA at the centre of the chromosome. gidA was located close to the left hand extremity of the chromosome. Because gyrB, dnaA and gidA are normally located within 50 kb of the origin of replication (oriC), we propose two possible sites for oriC in the B. burgdorferi linear chromosome.  相似文献   

4.
5.
We have developed a simple three-step method for transferring oriC mutations from plasmids to the Escherichia coli chromosome. Ten oriC mutations were used to replace the wild-type chromosomal origin of a recBCsbcB host by recombination. The mutations were subsequently transferred to a wild-type host by transduction. oriC mutants with a mutated DnaA box R1 were not obtained, suggesting that R1 is essential for chromosomal origin function. The other mutant strains showed the same growth rates, DNA contents and cell mass as wild-type cells. Mutations in the left half of oriC, in DnaA boxes M, R2 or R3 or in the Fis or IHF binding sites caused moderate asynchrony of the initiation of chromosome replication, as measured by flow cytometry. In mutants with a scrambled DnaA box R4 or with a modified distance between DnaA boxes R3 and R4, initiations were severely asynchronous. Except for oriC14 and oriC21, mutated oriCs could not, or could only poorly, support minichromosome replication, whereas most of them supported chromosome replication, showing that the classical definition of a minimal oriC is not valid for chromosome replication. We present evidence that the functionality of certain mutated oriCs is far better on the chromosome than on a minichromosome.  相似文献   

6.
During initiation of DNA replication of plasmids containing the origin of the Escherichia coli chromosome (oriC), the proteins dnaA, dnaB, and dnaC interact and assemble a complex at oriC. The complex is larger and more asymmetric than that formed by dnaA protein and embraces an extra 50 base pairs at the left side of the minimal oriC sequence. Both dnaA and dnaB proteins have been identified in the complex by electron microscopy and antibody binding; dnaC protein was not detected. HU protein, which stimulates the activity of the initiation reaction, was often present. Entry of dnaB protein required dnaA and dnaC proteins and a supercoiled template. Thus, a complex structure, involving multiple proteins and a large region of DNA, must be formed at the origin to prepare the template for priming and replication.  相似文献   

7.
8.
We constructed Bacillus subtilis strains in which chromosome replication initiates from the minimal replicon of a plasmid isolated from Bacillus natto, independently of oriC. Integration of the replicon in either orientation at the proA locus (115 degrees on the genetic map) suppressed the temperature-sensitive phenotype caused by a mutation in dnaA, a gene required for initiation of replication from oriC. In addition, in a strain with the plasmid replicon integrated into the chromosome, we were able to delete sequences required for oriC function. These strains were viable but had a slower growth rate than the oriC+ strains. Marker frequency analysis revealed that both pyrD and metD, genes close to proA, showed the highest values among the markers (genes) measured, and those of other markers decreased symmetrically with distance from the site of the integration (proA). These results indicated that the integrated plasmid replicon operated as a new and sole origin of chromosome replication in these strains and that the mode of replication was bidirectional. Interestingly, these mutants produced anucleate cells at a high frequency (about 40% in exponential culture), and the distribution of chromosomes in the cells was irregular. A change in the site and mechanism (from oriC to a plasmid system) of initiation appears to have resulted in a drastic alteration in coordination between chromosome replication and chromosome partition or cell division.  相似文献   

9.
A newly isolated Escherichia coli mutant thermosensitive in DNA synthesis had an allele named dnaR130, which was located at 26.3 minutes on the genetic map. The mutant was defective in initiation of chromosome replication but not in propagation at a high temperature. This mutant was capable of growing in the absence of the rnh function at the high temperature by means of a dnaA-independent replication mechanism. In the mutant exposed to the high temperature, an oriC plasmid was able to replicate, although at a lower rate than at the low temperature. The plasmid replication at the high temperature depended on the dnaA function essential for the initiation of replication from oriC. The mutant lacking the rnh function persistently maintained the oriC plasmid at the high temperature in a dnaA-dependent manner. Thus, the dnaR function was required for initiation of replication of the bacterial chromosome from oriC but not the oriC plasmid. This result reveals that a dnaR-dependent initiation mechanism that is dispensable for oriC plasmid replication operates in the bacterial chromosome replication.  相似文献   

10.
ATP binding to dnaA protein is essential for its action in initiating the replication of plasmids that bear the unique origin of the Escherichia coli chromosome (oriC). ADP bound to that site renders dnaA protein inactive for replication. Diphosphatidylglycerol (cardiolipin), a diacidic membrane phospholipid, displaces the bound nucleotide, and in the presence of components that reconstitute replication, fully reactivates the inert ADP form of dnaA protein. The monacidic phosphatidylglycerol is one-tenth as active as cardiolipin, whereas the neutral phosphatidylethanolamine, the principal E. coli phospholipid, is inactive. Fluphenazine, a tranquilizer drug, blocks cardiolipin activation of dnaA protein, in keeping with the inhibitory action of such agents on phospholipid-dependent enzymes. With the use of this drug to terminate cardiolipin action, dependence of the activation on time, elevated temperature, and high levels of ATP was demonstrated. Cardiolipin binding of nucleotide-free dnaA protein prevents binding of ATP and initiation of oriC replication. Removal of a fatty acid from cardiolipin by phospholipase A reverses this inhibitory effect. The strong and specific interaction of cardiolipin, a cell membrane component, with an essential nucleotide-binding site of dnaA protein, the protein essential for the initiation of chromosome replication, may be an important element in regulating the cell cycle.  相似文献   

11.
12.
Current views of bacterial chromosome segregation vary in respect of the likely presence or absence of an active segregation mechanism involving a mitotic-like apparatus. Furthermore, little is known about cis-acting elements for chromosome segregation in bacteria. In this report, we show that two separate DNA regions, a 3' coding region of dnaA and the AT-rich sequence between dnaA and dnaN (the initial opening site of duplex DNA during replication), are necessary for efficient segregation of the chromosome in Bacillus subtilis. When a plasmid replicon was integrated into argG, far from oriC, on the chromosome and then the oriC function was disrupted, the oriC-deleted mutant formed anucleate cells at 5% possibly because of defects in chromosome segregation. However, when the two DNA sequences were added near oriN, frequency of anucleate cells decreased to 1%. In these cells, the origin (argG) regions were localized near cell poles, whereas they were randomly distributed in cells without the two DNA sequences. These results suggest that the two DNA sequences in and downstream of the dnaA gene participate in correct positioning of the replication origin region within the cell and that this function is associated with accurate chromosome segregation in B. subtilis.  相似文献   

13.
We have developed a genetic system with which to replace oriC+ on the Escherichia coli chromosome with modified oriC sequences constructed on plasmids. Using this system we have demonstrated that chromosomal oriC can tolerate the insertion of a 2 kb fragment at the HindIII site between DnaA boxes R3 and R4, whereas the same insertion completely inactivates cloned oriC. We have further found that although R4 is essential for the origin activity of cloned oriC, cells carrying a deletion of R4 in chromosomal oriC are viable. These results indicate that the oriC sequence necessary for initiation of chromosome replication is different from the so-called minimal oriC that was determined with cloned oriC. Flow cytometric analyses have revealed that these oriC mutations confer the initiation asynchrony phenotype. Introduction of the R4 deletion into a fis::kan mutant, which lacks the DNA bending protein FIS, renders the mutant cells inviable.  相似文献   

14.
During enzymatic replication of plasmids containing the origin of the Escherichia coli chromosome, oriC, formation of an active initiation complex consisting of dnaA, dnaB, dnaC, and HU proteins, requires a supercoiled DNA template. Relaxed covalently closed plasmids are active only if supercoiled by gyrase prior to initiation; nicked and linear DNAs are inactive. Semi-conservative replication proceeds via delta structure as intermediates. Daughter molecules include nicked intermediates. Daughter molecules include nicked monomers and catenated pairs. Elongation is rapid, but late replicative intermediates accumulate because the final elongation and termination steps are slow. Production of covalently closed circular daughter DNA molecules requires removal of ribonucleotide residues (primers) by DNA polymerase I, assisted by ribonuclease H, gap filling, and ligation of nascent strands by ligase. Reconstitution of a complete cycle of oriC plasmid replication, beginning and ending with supercoiled molecules, has been achieved with purified proteins.  相似文献   

15.
Cell size and DNA concentration were measured in Escherichia coli K-12 ET64. This strain carries a dnaA (Ts) mutation that has been suppressed by the insertion of the F plasmid into the chromosome. ET64 can grow in a balanced steady state of exponential growth at the restrictive temperature for its dnaA allele (39 degrees C), in which chromosome replication is controlled by the F plasmid, and at the permissive temperature (30 degrees C), in which chromosome replication is controlled by dnaA-oriC. When cells grown at the indicated temperatures were compared, it was observed that at 39 degrees C, the cell mass increased and the amount of cellular DNA decreased slightly; therefore, the DNA concentration was strongly reduced. These changes can neither be explained by the reduction of the generation time (which is only 10-15%) nor from observed changes in the replication time and in the time between DNA synthesis termination and cell division. Variations were mainly due to the increase in cell mass per origin of replication, at initiation, in cells grown at 39 degrees C. Control of chromosome replication by the F plasmid appears to be the reason for the increase in the initiation mass. Other possible causes, such as the modification of growth temperature, the generation time, or both, were discarded. These observations suggest that at one growth rate, the F plasmid replicates at a particular cell mass to F particle number ratio, and that this ratio is higher than the cell mass to oriC ratio at the initiation of chromosome replication. This fact might be significant to coordinate the replication of two different replicons in the same cell.  相似文献   

16.
Two hundred strains of Escherichia coli harboring Filv+ plasmids which carry a segment of the Salmonella typhimurium chromosome were isolated independently. Among them, two strains were found to harbor F' plasmids that are able to replicate in Hfr cells of E. coli; i.e., they carry a site designated poh (permissive on Hfr) of the S. typhimurium chromosome. The poh site is presumably identical with the replication origin (oriC) of the bacterial chromosome. These two plasmids carry the dnaA-uncA-rbs-ilv-cya-metE region of the chromosome of S. typhimurium. Other F' plasmids which only carried the ilv-cya-metE region were unable to be maintained in Hfr cells. The poh site (= oriC) of S. typhimurium thus is located in the uhp-ilv region of the chromosome. The two plasmids carrying the poh site of S. typhimurium can suppress the temperature-sensitive character of an E. coli mutant that carries the temperature-sensitive dnaA46 allele, when the plasmids exist in the mutant cells. This suggests that the dnaA chromosome in place of the dnaA gene product of E. coli itself. The ability of the plasmids carrying the poh site of S. typhimurium to replicate in Hfr cells of E. coli suggests that the replication system of E. coli can recognize the Salmonella replication origin.  相似文献   

17.
On the basis of the observation that dnaA protein binds preferentially to DNA fragments carrying the Escherichia coli chromosomal replication origin (oriC), the binding sites were investigated by DNase I footprinting. As a result, three strong binding sites were identified in the minimal oriC sequence. The respective binding sites were 16 to 17 base-pairs long, and contained a common sequence (5') T-G-T-G-(G/T)-A-T-A-A-C (3') in the middle, although their polarities were not the same. Since mutants defective in function for autonomous replication have been isolated in the corresponding positions of the common sequence at each binding site, dnaA protein-binding at these sites seems to be significant for replication initiation.  相似文献   

18.
A 13-kb DNA fragment containing oriC and the flanking genes thdF, orf900, yidC, rnpA, rpmH, oriC, dnaA, dnaN, recF, and gyrB was cloned from the gram-negative plant pathogen Xanthomonas campestris pv. campestris 17. These genes are conserved in order with other eubacterial oriC genes and code for proteins that share high degrees of identity with their homologues, except for orf900, which has a homologue only in Xylella fastidiosa. The dnaA/dnaN intergenic region (273 bp) identified to be the minimal oriC region responsible for autonomous replication has 10 pure AT clusters of four to seven bases and only three consensus DnaA boxes. These findings are in disagreement with the notion that typical oriCs contain four or more DnaA boxes located upstream of the dnaA gene. The X. campestris pv. campestris 17 attB site required for site-specific integration of cloned fragments from filamentous phage phiLf replicative form DNA was identified to be a dif site on the basis of similarities in nucleotide sequence and function with the Escherichia coli dif site required for chromosome dimer resolution and whose deletion causes filamentation of the cells. The oriC and dif sites were located at 12:00 and 6:00, respectively, on the circular X. campestris pv. campestris 17 chromosome map, similar to the locations found for E. coli sites. Computer searches revealed the presence of both the dif site and XerC/XerD recombinase homologues in 16 of the 42 fully sequenced eubacterial genomes, but eight of the dif sites are located far away from the 6:00 point instead of being placed opposite the cognate oriC. The differences in the relative position suggest that mechanisms different from that of E. coli may participate in the control of chromosome replication.  相似文献   

19.
A new Escherichia coli mutant allele, named dnaR, that causes thermosensitive initiation of chromosome replication has been identified to be an allele of the prs gene, the gene for phosphoribosylpyrophosphate synthetase (Y. Sakakibara, J. Mol. Biol. 226:979-987, 1992; Y. Sakakibara, J. Mol. Biol. 226:989-996, 1992). The dnaR mutant became temperature resistant by acquisition of a mutation in the dnaA gene that did not affect the intrinsic activity for the initiation of replication. The suppressor mutant was capable of initiating replication from oriC at a high temperature restrictive for the dnaR single mutant. The thermoresistant DNA synthesis was inhibited by the presence of the wild-type dnaA allele at a high but not a low copy number. The synthesis was also inhibited by an elevated dose of a mutant dnaR allele retaining dnaR activity. Therefore, thermoresistant DNA synthesis in the suppressor mutant was dependent on both the dnaA and the dnaR functions. On the basis of these results, I conclude that the initiation of chromosome replication requires cooperation of the prs and dnaA products.  相似文献   

20.
The replication of chromosomes and minichromosomes in Escherichia coli B/r was examined under conditions in which the dnaA gene product was overproduced. Increased levels of the DnaA protein were achieved by thermoinduction of the dnaA gene, under the control of the lambda pL promoter, or by cellular maintenance of multicopy plasmids carrying the dnaA gene under the control of its own promoters. Previous work has shown that overproduction of DnaA protein stimulates replication of the chromosomal origin, oriC, but that the newly initiated forks do not progress along the length of the chromosome (T. Atlung, K. V. Rasmussen, E. Clausen, and F. G. Hansen, p. 282-297, in M. Schaechter, F. C. Neidhardt, J. L. Ingraham, and N. O. Kjeldgaard, ed., The Molecular Biology of Bacterial Growth, 1985). In the present study, it was found that overproduction of DnaA protein caused both a two- to threefold increase in the amount of residual chromosome replication and an extended synthesis of minichromosome DNA in the presence of rifampin. The amount of residual chromosome replication was consistent with the appearance of functional replication forks on the majority of the chromosomes. Since the rate of DNA accumulation and the cellular DNA/mass ratios were not increased significantly by overexpression of the dnaA gene, we concluded that the addition of rifampin either enabled stalled replication forks to proceed beyond oriC or enabled new forks to initiate on both chromosomes and minichromosomes, or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号