首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

The amount of DNA comprising the genome of an organism (its genome size) varies a remarkable 40 000-fold across eukaryotes, yet most groups are characterized by much narrower ranges (e.g. 14-fold in gymnosperms, 3- to 4-fold in mammals). Angiosperms stand out as one of the most variable groups with genome sizes varying nearly 2000-fold. Nevertheless within angiosperms the majority of families are characterized by genomes which are small and vary little. Species with large genomes are mostly restricted to a few monocots families including Orchidaceae.

Scope

A survey of the literature revealed that genome size data for Orchidaceae are comparatively rare representing just 327 species. Nevertheless they reveal that Orchidaceae are currently the most variable angiosperm family with genome sizes ranging 168-fold (1C = 0·33–55·4 pg). Analysing the data provided insights into the distribution, evolution and possible consequences to the plant of this genome size diversity.

Conclusions

Superimposing the data onto the increasingly robust phylogenetic tree of Orchidaceae revealed how different subfamilies were characterized by distinct genome size profiles. Epidendroideae possessed the greatest range of genome sizes, although the majority of species had small genomes. In contrast, the largest genomes were found in subfamilies Cypripedioideae and Vanilloideae. Genome size evolution within this subfamily was analysed as this is the only one with reasonable representation of data. This approach highlighted striking differences in genome size and karyotype evolution between the closely related Cypripedium, Paphiopedilum and Phragmipedium. As to the consequences of genome size diversity, various studies revealed that this has both practical (e.g. application of genetic fingerprinting techniques) and biological consequences (e.g. affecting where and when an orchid may grow) and emphasizes the importance of obtaining further genome size data given the considerable phylogenetic gaps which have been highlighted by the current study.Key words: AFLP, C-value, chromosome, evolution, genome size, guard cell size, Orchidaceae, Robertsonian fission, Robertsonian fusion  相似文献   

2.
3.
4.
Genome size in gymnosperms   总被引:7,自引:0,他引:7  
The DNA 2C and per chromosome values of 57 species belonging to 22 genera of gymnosperms have been analysed. The overall range is 12-fold with a modal value of about 30.0 pg.Cycadales exhibit a 2-fold difference. AmongConiferales with a 4-fold variation, thePinaceae have higher mean DNA contents as well as a greater range and diversity than other families. Remarkable interspecific differences are found inCycas, Picea, Larix, Pinus, Callitris, Cupressus, andChamaecyparis. Despite this, there is a constancy of basikaryotypes within these genera.Gnetum shows a distinctly low DNA value.  相似文献   

5.
6.
Genome size in mammals   总被引:7,自引:2,他引:7  
Nuclear DNA amounts of fifteen species of placental mammals were determined by Feulgen cytophotometry. Relative values for several widely used species have been ascertained with an error of only a few percent. Absolute values (picograms or numbers of nucleotide pairs) can be determined with an error of about ten percent. The largest known mammalian genome contains about twice the DNA of the smallest one. The modal diploid DNA amount for mammals is slightly above eight picograms.  相似文献   

7.
8.
Analysis of the AMP-forming ACS gene was performed in 12 species of the Drosophilidae family. Systematically four introns, aligned at the same positions, were detected, but none of them showed a position similar to those known for species outside the Drosophilidae family. The average length of introns varied from 63 to 75 bp but in two species Drosophila takahashii and D. kikkawai the length of the second intron was 343 and 210 bp, respectively. In coding regions, about 80% of the third codon positions were substituted while first and second positions showed, respectively, 14% and 6% substitutions. Interestingly, the divergence observed at the protein level between species was very low. The phylogenetic tree based on the DNA sequences of the exons was mainly in agreement with taxonomic classification and previous molecular phylogenies except for D. ananassae, which appeared more closely related to D. subobscura and D. funebris than to the species of the melanogaster group.  相似文献   

9.
The genomic peculiarities among microbial eukaryotes challenge the conventional wisdom of genome evolution. Currently, many studies and textbooks explore principles of genome evolution from a limited number of eukaryotic lineages, focusing often on only a few representative species of plants, animals and fungi. Increasing emphasis on studies of genomes in microbial eukaryotes has and will continue to uncover features that are either not present in the representative species (e.g. hypervariable karyotypes or highly fragmented mitochondrial genomes) or are exaggerated in microbial groups (e.g. chromosomal processing between germline and somatic nuclei). Data for microbial eukaryotes have emerged from recent genome sequencing projects, enabling comparisons of the genomes from diverse lineages across the eukaryotic phylogenetic tree. Some of these features, including amplified rDNAs, subtelomeric rDNAs and reduced genomes, appear to have evolved multiple times within eukaryotes, whereas other features, such as absolute strand polarity, are found only within single lineages.  相似文献   

10.
Genome size and evolution   总被引:14,自引:0,他引:14  
  相似文献   

11.
Examination of data on genome size for prokaryotic cells suggests an evolutionary scheme.  相似文献   

12.
13.
Genome size was measured in 75 samples of the wild pea species Pisum abyssinicum, P. elatius, P. fulvum and P. humile by ethidium-bromide (EB) flow cytometry (internal standard: Triticum monococcum) and Feulgen densitometry (internal standard: Pisum sativum Kleine Rheinländerin). Total variation of EB-DNA between samples covered 97.7% to 114.9% of the P. sativum value, and Feulgen DNA values were strongly correlated with EB-DNA values (r=0.9317, P < 0.001). Only P. fulvum was homogeneous in genome size (108.9% of P. sativum). Wide variation was observed between samples in P. abyssinicum (100.9–109.7%), P. elatius (97.7–114.9%) and P. humile (98.3–111.1% of P. sativum). In view of the world-wide genome size constancy in P. sativum, the present data are interpreted to show that the pea taxa with variable genome size are genetically inhomogeneous and that the current classification is not sufficient to describe the biological species groups adequately.  相似文献   

14.
15.
16.
17.
18.
Genome size and developmental complexity   总被引:5,自引:0,他引:5  
Gregory TR 《Genetica》2002,115(1):131-146
Haploid genome size (C-value) is correlated positively with cell size, and negatively with cell division rate, in a variety of taxa. Because these associations are causative, genome size has the potential to impact (and in turn, be influenced by) organism-level characters affected by variation in either of these cell-level parameters. One such organismal feature is development. Developmental rate, in particular, has been associated with genome size in numerous plant, vertebrate, and invertebrate groups. However, rate is only one side of the developmental coin; the other important component is complexity. When developmental complexity is held essentially constant, as among many plants, developmental rate is the visibly relevant parameter. In this case, genome size can impose thresholds on developmental lifestyle (and vice versa), as among annual versus perennial plants. When developmental rate is constrained (as during time-limited amphibian metamorphosis), complexity becomes the notable variable. An appreciation for this rate-complexity interaction has so far been lacking, but is essential for an understanding of the relationships between genome size and development. Moreover, such an expanded view may help to explain patterns of variation in taxa as diverse as insects and fish. In each case, a hierarchical approach is necessary which recognizes the complex interaction of evolutionary processes operating at several levels of biological organization.  相似文献   

19.
The phylogenetic relationships of several taxa from representative genera, subgenera, groups, and subgroups in the Drosophilidae were examined using sequences from a 905-bp mtDNA fragment. Conventional cloning and sequencing techniques were used to obtain nucleotide sequences. In addition, polymerase chain reaction primers were designed for the rapid amplification and sequencing of this region for the species examined in the Drosophilidae. Phylogenetic analysis was done by cladistic techniques. Because of the coding nature of the 905-bp mtDNA fragment, several separate analyses of these sequences were performed. The genera Scaptomyza and Hirtodrosophila occupy ancestral branching positions in the molecular phylogeny. The genera Chymomyza and Zaprionus have intermediate branching positions, while the subgenera Drosophila and Sophophora are in the most derived position in the molecular phylogeny. Within the subgenus Sophophora, there is little resolution using these sequences, while within the subgenus Drosophila, D. melanica, D. funebris, and D. pinicola form a clade in a derived part of the phylogeny, with D. robusta and D. immigrans branching in an intermediate position in the phylogeny. D. mercatorum, a member of the repleta species group, occupies an ancestral position in the molecular phylogeny.  相似文献   

20.
Genome size and complexity in Azotobacter chroococcum   总被引:21,自引:0,他引:21  
All of eight strains of Azotobacter chroococcum examined contained between two and six plasmids ranging from 7 to more than 200 MDal in size. Strain MCC-1, a derivative of NCIMB 8003, was cured of various of the four largest of its five plasmids and the phenotypes of the strains compared. all fixed nitrogen and exhibited uptake hydrogenase activity. No differences were observed in carbon source utilization or antibiotic, heavy metal or UV resistance. The genome sizes of two strains of A. chroococcum were determined by two-dimensional electrophoresis. Strain CW8, an isolate from local soil containing two small plasmids of 6 and 6.5 MDAl contained unique DNA sequences equivalent to 1.78 x 10(6) (+/- 20%) bp (1.2 x 10(9) Dal). In strain MDC-1, a derivative of MCC-1, containing a 190 MDal and 7 MDal plasmid, the genome size was 1.94 x 10(6) (+/- 20%) bp. In exponential batch cultures, both contained 20 to 25 genome equivalents per cell. MCD-1 exhibited complex UV kill kinetics with a marked plateau of resistance; CW8 showed a simple response inconsistent with the possibility of organization of its DNA into identical chromosome copies capable of independent segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号