首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study examined age-related differences in multisensory integration and the effect of spatial disparity on the sound-induced flash illusion—-an illusion used in previous research to assess age-related differences in multisensory integration. Prior to participation in the study, both younger and older participants demonstrated their ability to detect 1–2 visual flashes and 1–2 auditory beep presented unimodally. After passing the pre-test, participants were then presented 1–2 flashes paired with 0–2 beeps that originated from one of five speakers positioned equidistantly 100cm from the participant. One speaker was positioned directly below the screen, two speakers were positioned 50cm to the left and right from the center of the screen, and two more speakers positioned to the left and right 100cm from the center of the screen. Participants were told to report the number of flashes presented and to ignore the beeps. Both age groups showed a significant effect of the beeps on the perceived number of flashes. However, neither younger nor older individuals showed any significant effect of spatial disparity on the sound-induced flash illusion. The presence of a congruent number of beeps increased accuracy for both older and younger individuals. Reaction time data was also analyzed. As expected, older individuals showed significantly longer reaction times when compared to younger individuals. In addition, both older and younger individuals showed a significant increase in reaction time for fusion trials, where two flashes and one beep are perceived as a single flash, as compared to congruent single flash trials. This increase in reaction time was not found for fission trials, where one flash and two beeps were perceived as two flashes. This suggests that processing may differ for the two forms for fission as compared to fusion illusions.  相似文献   

2.
Initiating an eye movement towards a suddenly appearing visual target is faster when an accessory auditory stimulus occurs in close spatiotemporal vicinity. Such facilitation of saccadic reaction time (SRT) is well-documented, but the exact neural mechanisms underlying the crossmodal effect remain to be elucidated. From EEG/MEG studies it has been hypothesized that coupled oscillatory activity in primary sensory cortices regulates multisensory processing. Specifically, it is assumed that the phase of an ongoing neural oscillation is shifted due to the occurrence of a sensory stimulus so that, across trials, phase values become highly consistent (phase reset). If one can identify the phase an oscillation is reset to, it is possible to predict when temporal windows of high and low excitability will occur. However, in behavioral experiments the pre-stimulus phase will be different on successive repetitions of the experimental trial, and average performance over many trials will show no signs of the modulation. Here we circumvent this problem by repeatedly presenting an auditory accessory stimulus followed by a visual target stimulus with a temporal delay varied in steps of 2 ms. Performing a discrete time series analysis on SRT as a function of the delay, we provide statistical evidence for the existence of distinct peak spectral components in the power spectrum. These frequencies, although varying across participants, fall within the beta and gamma range (20 to 40 Hz) of neural oscillatory activity observed in neurophysiological studies of multisensory integration. Some evidence for high-theta/alpha activity was found as well. Our results are consistent with the phase reset hypothesis and demonstrate that it is amenable to testing by purely psychophysical methods. Thus, any theory of multisensory processes that connects specific brain states with patterns of saccadic responses should be able to account for traces of oscillatory activity in observable behavior.  相似文献   

3.
The force exerted by a single limb during a maximal bilateral contraction has been found to be less than the force associated with a maximal unilateral contraction. The purpose of this study was to determine whether this bilateral deficit is due to neural mechanisms. For one experiment, three groups of subjects (untrained, cyclists, and weight lifters) performed maximal one- or two-limb isometric tasks for which the two-limb combinations were either both legs or the left arm and the right leg. The untrained subjects exhibited a bilateral deficit, the cyclists did not, and the weight lifters produced a bilateral facilitation. Although the changes in electromyogram did not completely parallel the changes in force, variability in the filtered electromyogram associated with the maximal contraction was too great for reliable interpretation. The arm-leg task demonstrated that the bilateral deficit affects only homologous contralateral muscles. For the second experiment, two groups of subjects (bilateral deficit and bilateral facilitation) performed maximal left leg contractions while the right leg either rested or was activated with electrical stimulation. All subjects produced an increase in the maximal voluntary left leg force during right leg electromyostimulation. The magnitude of the increase was greatest for the bilateral facilitation subjects. These results suggest that interlimb interactions during maximal bilateral contractions are mediated by neural mechanisms.  相似文献   

4.
Gottfried JA  Dolan RJ 《Neuron》2003,39(2):375-386
Human olfactory perception is notoriously unreliable, but shows substantial benefits from visual cues, suggesting important crossmodal integration between these primary sensory modalities. We used event-related fMRI to determine the underlying neural mechanisms of olfactory-visual integration in the human brain. Subjects participated in an olfactory detection task, whereby odors and pictures were delivered separately or together. By manipulating the degree of semantic correspondence between odor-picture pairs, we show a perceptual olfactory facilitation for semantically congruent (versus incongruent) trials. This behavioral advantage was associated with enhanced neural activity in anterior hippocampus and rostromedial orbitofrontal cortex. We suggest these findings can be interpreted as indicating that human hippocampus mediates reactivation of crossmodal semantic associations, even in the absence of explicit memory processing.  相似文献   

5.
A number of recent studies have demonstrated superior visual processing when the information is distributed across the left and right visual fields than if the information is presented in a single hemifield (the bilateral field advantage). This effect is thought to reflect independent attentional resources in the two hemifields and the capacity of the neural responses to the left and right hemifields to process visual information in parallel. Here, we examined whether a bilateral field advantage can also be observed in a high-level visual task that requires the information from both hemifields to be combined. To this end, we used a visual enumeration task--a task that requires the assimilation of separate visual items into a single quantity--where the to-be-enumerated items were either presented in one hemifield or distributed between the two visual fields. We found that enumerating large number (>4 items), but not small number (<4 items), exhibited the bilateral field advantage: enumeration was more accurate when the visual items were split between the left and right hemifields than when they were all presented within the same hemifield. Control experiments further showed that this effect could not be attributed to a horizontal alignment advantage of the items in the visual field, or to a retinal stimulation difference between the unilateral and bilateral displays. These results suggest that a bilateral field advantage can arise when the visual task involves inter-hemispheric integration. This is in line with previous research and theory indicating that, when the visual task is attentionally demanding, parallel processing by the neural responses to the left and right hemifields can expand the capacity of visual information processing.  相似文献   

6.
The deprivation of sensory input after hearing damage results in functional reorganization of the brain including cross-modal plasticity in the sensory cortex and changes in cognitive processing. However, it remains unclear whether partial deprivation from unilateral auditory loss (UHL) would similarly affect the neural circuitry of cognitive processes in addition to the functional organization of sensory cortex. Here, we used resting-state functional magnetic resonance imaging to investigate intrinsic activity in 34 participants with UHL from acoustic neuroma in comparison with 22 matched normal controls. In sensory regions, we found decreased regional homogeneity (ReHo) in the bilateral calcarine cortices in UHL. However, there was an increase of ReHo in the right anterior insular cortex (rAI), the key node of cognitive control network (CCN) and multimodal sensory integration, as well as in the left parahippocampal cortex (lPHC), a key node in the default mode network (DMN). Moreover, seed-based resting–state functional connectivity analysis showed an enhanced relationship between rAI and several key regions of the DMN. Meanwhile, lPHC showed more negative relationship with components in the CCN and greater positive relationship in the DMN. Such reorganizations of functional connectivity within the DMN and between the DMN and CCN were confirmed by a graph theory analysis. These results suggest that unilateral sensory input damage not only alters the activity of the sensory areas but also reshapes the regional and circuit functional organization of the cognitive control network.  相似文献   

7.
Betchen  SA; Doty  RL 《Chemical senses》1998,23(4):453-457
Several fundamental questions remain enigmatic concerning human olfactory sensitivity, including (i) whether detection threshold differences exist between the two sides of the nose (and, if so, whether such differences are influenced by handedness) and (ii) whether bilateral (i.e. binasal) stimulation leads to lower thresholds than unilateral stimulation (and, if so, whether the degree of facilitation is inversely related to general olfactory ability). In this study, and well-validated single staircase procedure was used to establish bilateral and unilateral detection thresholds for the cranial nerve I stimulant phenyl ethyl alcohol in 130 right- and 33 left-handed subjects. No differences in sensitivity between the left and right sides of the nose were observed in either group. Bilateral thresholds were lower, on average, than unilateral thresholds when the latter were categorized in terms of left and right nares. However, the bilateral thresholds did not differ significantly from those of the side of the nose with the lower threshold. Overall smell ability, as measured by the University of Pennsylvania Smell Identification Test, did not interact with any of the test measures. These data imply that (i) the left and right sides of the nose do not systematically differ in detection threshold sensitivity for either dextrals or sinistrals and (ii) if central integration of left:right olfactory threshold sensitivity occurs, its effects do not exceed the function of the better side of the nose.   相似文献   

8.
Currently debate exists relating to the interplay between multisensory processes and bottom-up and top-down influences. However, few studies have looked at neural responses to newly paired audiovisual stimuli that differ in their prescribed relevance. For such newly associated audiovisual stimuli, optimal facilitation of motor actions was observed only when both components of the audiovisual stimuli were targets. Relevant auditory stimuli were found to significantly increase the amplitudes of the event-related potentials at the occipital pole during the first 100 ms post-stimulus onset, though this early integration was not predictive of multisensory facilitation. Activity related to multisensory behavioral facilitation was observed approximately 166 ms post-stimulus, at left central and occipital sites. Furthermore, optimal multisensory facilitation was found to be associated with a latency shift of induced oscillations in the beta range (14–30 Hz) at right hemisphere parietal scalp regions. These findings demonstrate the importance of stimulus relevance to multisensory processing by providing the first evidence that the neural processes underlying multisensory integration are modulated by the relevance of the stimuli being combined. We also provide evidence that such facilitation may be mediated by changes in neural synchronization in occipital and centro-parietal neural populations at early and late stages of neural processing that coincided with stimulus selection, and the preparation and initiation of motor action.  相似文献   

9.
Human psychophysical studies have described multisensory perceptual benefits such as enhanced detection rates and faster reaction times in great detail. However, the neural circuits and mechanism underlying multisensory integration remain difficult to study in the primate brain. While rodents offer the advantage of a range of experimental methodologies to study the neural basis of multisensory processing, rodent studies are still limited due to the small number of available multisensory protocols. We here demonstrate the feasibility of an audio-visual stimulus detection task for rats, in which the animals detect lateralized uni- and multi-sensory stimuli in a two-response forced choice paradigm. We show that animals reliably learn and perform this task. Reaction times were significantly faster and behavioral performance levels higher in multisensory compared to unisensory conditions. This benefit was strongest for dim visual targets, in agreement with classical patterns of multisensory integration, and was specific to task-informative sounds, while uninformative sounds speeded reaction times with little costs for detection performance. Importantly, multisensory benefits for stimulus detection and reaction times appeared at different levels of task proficiency and training experience, suggesting distinct mechanisms inducing these two multisensory benefits. Our results demonstrate behavioral multisensory enhancement in rats in analogy to behavioral patterns known from other species, such as humans. In addition, our paradigm enriches the set of behavioral tasks on which future studies can rely, for example to combine behavioral measurements with imaging or pharmacological studies in the behaving animal or to study changes of integration properties in disease models.  相似文献   

10.
During the last two decades ferrets (Mustela putorius) have been established as a highly efficient animal model in different fields in neuroscience. Here we asked whether ferrets integrate sensory information according to the same principles established for other species. Since only few methods and protocols are available for behaving ferrets we developed a head-free, body-restrained approach allowing a standardized stimulation position and the utilization of the ferret’s natural response behavior. We established a behavioral paradigm to test audiovisual integration in the ferret. Animals had to detect a brief auditory and/or visual stimulus presented either left or right from their midline. We first determined detection thresholds for auditory amplitude and visual contrast. In a second step, we combined both modalities and compared psychometric fits and the reaction times between all conditions. We employed Maximum Likelihood Estimation (MLE) to model bimodal psychometric curves and to investigate whether ferrets integrate modalities in an optimal manner. Furthermore, to test for a redundant signal effect we pooled the reaction times of all animals to calculate a race model. We observed that bimodal detection thresholds were reduced and reaction times were faster in the bimodal compared to unimodal conditions. The race model and MLE modeling showed that ferrets integrate modalities in a statistically optimal fashion. Taken together, the data indicate that principles of multisensory integration previously demonstrated in other species also apply to crossmodal processing in the ferret.  相似文献   

11.
Ohla K  Toepel U  le Coutre J  Hudry J 《PloS one》2012,7(3):e32434
Vision provides a primary sensory input for food perception. It raises expectations on taste and nutritional value and drives acceptance or rejection. So far, the impact of visual food cues varying in energy content on subsequent taste integration remains unexplored. Using electrical neuroimaging, we assessed whether high- and low-calorie food cues differentially influence the brain processing and perception of a subsequent neutral electric taste. When viewing high-calorie food images, participants reported the subsequent taste to be more pleasant than when low-calorie food images preceded the identical taste. Moreover, the taste-evoked neural activity was stronger in the bilateral insula and the adjacent frontal operculum (FOP) within 100 ms after taste onset when preceded by high- versus low-calorie cues. A similar pattern evolved in the anterior cingulate (ACC) and medial orbitofrontal cortex (OFC) around 180 ms, as well as, in the right insula, around 360 ms. The activation differences in the OFC correlated positively with changes in taste pleasantness, a finding that is an accord with the role of the OFC in the hedonic evaluation of taste. Later activation differences in the right insula likely indicate revaluation of interoceptive taste awareness. Our findings reveal previously unknown mechanisms of cross-modal, visual-gustatory, sensory interactions underlying food evaluation.  相似文献   

12.
The corpus callosum (CC) is a brain structure composed of axon fibres linking the right and left hemispheres. Musical training is associated with larger midsagittal cross-sectional area of the CC, suggesting that interhemispheric communication may be faster in musicians. Here we compared interhemispheric transmission times (ITTs) for musicians and non-musicians. ITT was measured by comparing simple reaction times to stimuli presented to the same hemisphere that controlled a button-press response (uncrossed reaction time), or to the contralateral hemisphere (crossed reaction time). Both visual and auditory stimuli were tested. We predicted that the crossed-uncrossed difference (CUD) for musicians would be smaller than for non-musicians as a result of faster interhemispheric transfer times. We did not expect a difference in CUDs between the visual and auditory modalities for either musicians or non-musicians, as previous work indicates that interhemispheric transfer may happen through the genu of the CC, which contains motor fibres rather than sensory fibres. There were no significant differences in CUDs between musicians and non-musicians. However, auditory CUDs were significantly smaller than visual CUDs. Although this auditory-visual difference was larger in musicians than non-musicians, the interaction between modality and musical training was not significant. Therefore, although musical training does not significantly affect ITT, the crossing of auditory information between hemispheres appears to be faster than visual information, perhaps because subcortical pathways play a greater role for auditory interhemispheric transfer.  相似文献   

13.
Dunn FA  Rieke F 《Neuron》2008,57(6):894-904
Adaptation or gain control allows sensory neurons to encode diverse stimuli using a limited range of output signals. Rod vision exemplifies a general challenge facing adaptational mechanisms-balancing the benefits of averaging to create a reliable signal for adaptation with the need to adapt rapidly and locally. The synapse between rod bipolar and AII amacrine cells dominates adaptation at low light levels. We find that adaptation occurs independently at each synapse and completes in <500 ms. This limited spatial and temporal integration suggests that the absorption of a single photon modulates gain. Indeed, responses to pairs of brief dim flashes showed directly that synaptic gain was depressed for 100-200 ms following transmission of a single-photon response. Presynaptic mechanisms mediated this synaptic depression. Thus, the division of light into discrete photons controls adaptation at this synapse, and gain varies with the irreducible statistical fluctuations in photon arrival.  相似文献   

14.
Unilateral light fingertip touch of a stationary object has a significant stabilizing effect on postural sway during stance. The purpose of this study was to find out if this effect is enhanced by bilateral light touch of parallel stationary objects. The postural sway of 54 healthy subjects was tested in four stance conditions: no touch; unilateral left light touch of the left handle of a walker; unilateral right light touch of the right handle of the same walker; and bilateral light touch of the two handles. During testing, subjects stood blindfolded on two foam pads placed on the left and right force plates of the Tetrax balance system. Testing in each condition lasted 45 s and was executed twice in a random order. As expected, postural sway was significantly reduced by unilateral left or right light fingertip touch. It was significantly further decreased by bilateral light touch. In addition, light touch conditions were associated with a reduction in pressure fluctuations between the heel and forefoot of the same foot as well as those of the contralateral foot, with a concomitant increase in weight shift fluctuations between the two feet. The decrease in postural sway with bilateral light touch suggests cortical modulation of the bilateral touch inputs, with enhancement of the stabilizing response.  相似文献   

15.
Correlation among neocortical neurons is thought to play an indispensable role in mediating sensory processing of external stimuli. The role of temporal precision in this correlation has been hypothesized to enhance information flow along sensory pathways. Its role in mediating the integration of information at the output of these pathways, however, remains poorly understood. Here, we examined spike timing correlation between simultaneously recorded layer V neurons within and across columns of the primary somatosensory cortex of anesthetized rats during unilateral whisker stimulation. We used bayesian statistics and information theory to quantify the causal influence between the recorded cells with millisecond precision. For each stimulated whisker, we inferred stable, whisker-specific, dynamic bayesian networks over many repeated trials, with network similarity of 83.3±6% within whisker, compared to only 50.3±18% across whiskers. These networks further provided information about whisker identity that was approximately 6 times higher than what was provided by the latency to first spike and 13 times higher than what was provided by the spike count of individual neurons examined separately. Furthermore, prediction of individual neurons' precise firing conditioned on knowledge of putative pre-synaptic cell firing was 3 times higher than predictions conditioned on stimulus onset alone. Taken together, these results suggest the presence of a temporally precise network coding mechanism that integrates information across neighboring columns within layer V about vibrissa position and whisking kinetics to mediate whisker movement by motor areas innervated by layer V.  相似文献   

16.
Unilateral light fingertip touch of a stationary object has a significant stabilizing effect on postural sway during stance. The purpose of this study was to find out if this effect is enhanced by bilateral light touch of parallel stationary objects. The postural sway of 54 healthy subjects was tested in four stance conditions: no touch; unilateral left light touch of the left handle of a walker; unilateral right light touch of the right handle of the same walker; and bilateral light touch of the two handles. During testing, subjects stood blindfolded on two foam pads placed on the left and right force plates of the Tetrax balance system. Testing in each condition lasted 45?s and was executed twice in a random order. As expected, postural sway was significantly reduced by unilateral left or right light fingertip touch. It was significantly further decreased by bilateral light touch. In addition, light touch conditions were associated with a reduction in pressure fluctuations between the heel and forefoot of the same foot as well as those of the contralateral foot, with a concomitant increase in weight shift fluctuations between the two feet. The decrease in postural sway with bilateral light touch suggests cortical modulation of the bilateral touch inputs, with enhancement of the stabilizing response.  相似文献   

17.
In experiments with monkeys (Macaca fascicularis) it has been shown that whole-body irradiation with a dose of 45 Gy (6.5 Gy/s) causes considerable changes in the EEG response to rhythmic photostimulation (PS). These changes are: reduction of the desynchronizing effect of PS with regard to a background rhythmicity; decrease in the reception rate of the rhythms of light flashes (RLF); narrowing of the RLF frequency range; and increase in the reaction momentum. The postirradiation changes in the EEG response to PS are considered as a manifestation of inhibition of the cortex functional activity and impairment of sensory information processing in the brain.  相似文献   

18.
A comparative study was conducted to investigate whether the search for a target letter was facilitated when the target and prime (preceding stimulus) letters were identical. Pigeons (Section 2) and human participants (Section 3) were first trained to search for “A” among “Y”s and “E” among “D”s in a condition in which a square shape appeared as the prime (Neutral condition). In subsequent testing, a prime was identical either to the corresponding target (Target-priming condition) or to the distractor (Distractor-priming condition). Humans and pigeons responded differently to the two priming conditions. On early trials, the Target prime facilitated search in humans, reducing reaction times (RTs) to targets. In pigeons, however, RTs were longer with Target primes, suggesting that pre-exposure to target letters may directly inhibit the search for targets in subsequent search displays. Furthermore, pre-exposure to the distractor letters may inhibit the processing of the distractor. On later trials, RTs of humans were faster in both priming conditions than in the Neutral condition, suggesting that expectation of a target facilitated search (“Y” predicted “A” and “D” predicted “E”). In contrast, the pigeons showed no evidence of expectation-based facilitation, with constant slowing effects of the Target prime extending across sessions. Possible mechanisms underlying such a slowing priming effect in pigeons were discussed.  相似文献   

19.
Cross-modal processing depends strongly on the compatibility between different sensory inputs, the relative timing of their arrival to brain processing components, and on how attention is allocated. In this behavioral study, we employed a cross-modal audio-visual Stroop task in which we manipulated the within-trial stimulus-onset-asynchronies (SOAs) of the stimulus-component inputs, the grouping of the SOAs (blocked vs. random), the attended modality (auditory or visual), and the congruency of the Stroop color-word stimuli (congruent, incongruent, neutral) to assess how these factors interact within a multisensory context. One main result was that visual distractors produced larger incongruency effects on auditory targets than vice versa. Moreover, as revealed by both overall shorter response times (RTs) and relative shifts in the psychometric incongruency-effect functions, visual-information processing was faster and produced stronger and longer-lasting incongruency effects than did auditory. When attending to either modality, stimulus incongruency from the other modality interacted with SOA, yielding larger effects when the irrelevant distractor occurred prior to the attended target, but no interaction with SOA grouping. Finally, relative to neutral-stimuli, and across the wide range of the SOAs employed, congruency led to substantially more behavioral facilitation than did incongruency to interference, in contrast to findings that within-modality stimulus-compatibility effects tend to be more evenly split between facilitation and interference. In sum, the present findings reveal several key characteristics of how we process the stimulus compatibility of cross-modal sensory inputs, reflecting stimulus processing patterns that are critical for successfully navigating our complex multisensory world.  相似文献   

20.
Individuals with profound deafness rely critically on vision to interact with their environment. Improvement of visual performance as a consequence of auditory deprivation is assumed to result from cross-modal changes occurring in late stages of visual processing. Here we measured reaction times and event-related potentials (ERPs) in profoundly deaf adults and hearing controls during a speeded visual detection task, to assess to what extent the enhanced reactivity of deaf individuals could reflect plastic changes in the early cortical processing of the stimulus. We found that deaf subjects were faster than hearing controls at detecting the visual targets, regardless of their location in the visual field (peripheral or peri-foveal). This behavioural facilitation was associated with ERP changes starting from the first detectable response in the striate cortex (C1 component) at about 80 ms after stimulus onset, and in the P1 complex (100-150 ms). In addition, we found that P1 peak amplitudes predicted the response times in deaf subjects, whereas in hearing individuals visual reactivity and ERP amplitudes correlated only at later stages of processing. These findings show that long-term auditory deprivation can profoundly alter visual processing from the earliest cortical stages. Furthermore, our results provide the first evidence of a co-variation between modified brain activity (cortical plasticity) and behavioural enhancement in this sensory-deprived population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号