首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emerging infectious diseases are major threats to human health.Most severe viral disease outbreaks occur in developing regions where health conditions are poor.With increased international travel and business,the possibility of eventually transmitting infectious viruses between different countries is increasing.The most effective approach in preventing viral diseases is vaccination.However,vaccines are not currently available for numerous viral diseases.Viruslike particles(VLPs) are engineered vaccine candidates that have been studied for decades.VLPs are constructed by viral protein expression in various expression systems that promote the selfassembly of proteins into structures resembling virus particles.VLPs have antigenicity similar to that of the native virus,but are non-infectious as they lack key viral genetic material.VLP vaccines have attracted considerable research interest because they offer several advantages over traditional vaccines.Studies have shown that VLP vaccines can stimulate both humoral and cellular immune responses,which may offer effective antiviral protection.Here we review recent developments with VLP-based vaccines for several highly virulent emerging or re-emerging infectious diseases.The infectious agents discussed include RNA viruses from different virus families,such as the Arenaviridae,Bunyaviridae,Caliciviridae,Coronaviridae,Filoviridae,Flaviviridae,Orthomyxoviridae,Paramyxoviridae,and Togaviridae families.  相似文献   

2.
Parasites typically have broader thermal limits than hosts, so large performance gaps between pathogens and their cold‐ and warm‐adapted hosts should occur at relatively warm and cold temperatures, respectively. We tested this thermal mismatch hypothesis by quantifying the temperature‐dependent susceptibility of cold‐ and warm‐adapted amphibian species to the fungal pathogen Batrachochytrium dendrobatidis (Bd) using laboratory experiments and field prevalence estimates from 15 410 individuals in 598 populations. In both the laboratory and field, we found that the greatest susceptibility of cold‐ and warm‐adapted hosts occurred at relatively warm and cool temperatures, respectively, providing support for the thermal mismatch hypothesis. Our results suggest that as climate change shifts hosts away from their optimal temperatures, the probability of increased host susceptibility to infectious disease might increase, but the effect will depend on the host species and the direction of the climate shift. Our findings help explain the tremendous variation in species responses to Bd across climates and spatial, temporal and species‐level variation in disease outbreaks associated with extreme weather events that are becoming more common with climate change.  相似文献   

3.
Emerging infectious diseases are major threats to wildlife populations. To enhance our understanding of the dynamics of these diseases, we investigated how host reproductive behavior and seasonal temperature variation drive transmission of infections among wild hosts, using the model system of cyprinid herpesvirus 3 (CyHV-3) disease in common carp. Our main findings were as follows: (1) a seroprevalence survey showed that CyHV-3 infection occurred mostly in adult hosts, (2) a quantitative assay for CyHV-3 in a host population demonstrated that CyHV-3 was most abundant in the spring when host reproduction occurred and water temperature increased simultaneously and (3) an analysis of the dynamics of CyHV-3 in water revealed that CyHV-3 concentration increased markedly in breeding habitats during host group mating. These results indicate that breeding habitats can become hot spots for transmission of infectious diseases if hosts aggregate for mating and the activation of pathogens occurs during the host breeding season.  相似文献   

4.
The African clawed frog Xenopus laevis is by far the most widely used amphibian species in laboratories. In the wild, X. laevis is an asymptomatic carrier of an emerging infectious disease called chytridiomycosis. The vector is the chytrid fungus Batrachochytrium dendrobatidis (Bd), which has devastating effects on wild amphibian populations around the world. The impact of Bd on the metabolism of X. laevis has not been comprehended yet. However, even if asymptomatic, an infection is likely to affect the individual's physiology, immunology, development, reproduction and overall response to stress from a purely medical point of view, which will introduce noise and therefore increase variance within experimental groups of X. laevis. This could have implications on the scientific results from studies using this species. Here, we review the current knowledge on treatments of infected amphibians and propose a hygiene protocol adapted to laboratory populations and amphibian husbandry. Following the presented sanitation guidelines could further prevent the spread of Bd and probably of other amphibian pathogens. The sanitation guidelines will help to reduce the impact of amphibian husbandry on natural populations and must be considered a crucial contribution to amphibian conservation, as today 32% of all amphibians are considered threatened.  相似文献   

5.
Climatological variation and ecological perturbation have been pervasive drivers of faunal assembly, structure and diversification for parasites and pathogens through recurrent events of geographical and host colonization at varying spatial and temporal scales of Earth history. Episodic shifts in climate and environmental settings, in conjunction with ecological mechanisms and host switching, are often critical determinants of parasite diversification, a view counter to more than a century of coevolutionary thinking about the nature of complex host–parasite assemblages. Parasites are resource specialists with restricted host ranges, yet shifts onto relatively unrelated hosts are common during phylogenetic diversification of parasite lineages and directly observable in real time. The emerging Stockholm Paradigm resolves this paradox: Ecological Fitting (EF)—phenotypic flexibility and phylogenetic conservatism in traits related to resource use, most notably host preference—provides many opportunities for rapid host switching in changing environments, without the evolution of novel host-utilization capabilities. Host shifts via EF fuel the expansion phase of the Oscillation Hypothesis of host range and speciation and, more generally, the generation of novel combinations of interacting species within the Geographic Mosaic Theory of Coevolution. In synergy, an environmental dynamic of Taxon Pulses establishes an episodic context for host and geographical colonization.  相似文献   

6.
7.
Models of virulence evolution generally consider the outcome of competition between resident and mutant parasite strains at or near endemic equilibrium. Less studied is what happens during the initial phases of invasion and adaptation. Understanding initial adaptive dynamics is particularly important in the context of emerging diseases in wildlife and humans, for which rapid and accurate intervention may be of the essence. To address the question of virulence evolution in emerging diseases, we employ a simple stochastic modeling framework. As is intuitive, the pathogen strains most likely to emerge are those with the highest net reproductive rates (R0). We find, however, that stochastic events shape the properties of emerging pathogens in sometimes unexpected ways. First, the mean virulence of emerging pathogens is expected to be larger in dense host populations and/or when transmission is high, due to less restrictive conditions for the spread of the pathogen. Second, a positive correlation between average virulence and transmissibility emerges due to a combination of drift and selection. We conclude that at least in the initial phases of adaptation, special assumptions about constraints need not be invoked to explain some virulence-transmission correlations and that virulence management practices should consider how residual variation in transmission and virulence can be selected to reduce the prevalence and/or virulence of emerging infectious diseases.  相似文献   

8.
To control emerging infectious diseases like SARS, it is necessary to resort to basic control measures that limit exposures to infectious individuals. These measures include isolating cases at diagnosis, quarantining household members and tracing contacts of diagnosed cases, providing the community with advice on how to reduce exposures, and closing schools. To justify such intervention it is important to understand how well each of these measures helps to limit transmission. In this paper, we determine the effect of a number of different interventions on the effective reproduction number and estimate requirements to achieve elimination of the infectious disease. We find that the strategy of tracing and quarantining contacts of diagnosed cases can be very successful in reducing transmission.  相似文献   

9.
Climate change and emerging infectious diseases   总被引:5,自引:0,他引:5  
The ranges of infectious diseases and vectors are changing in altitude, along with shifts in plant communities and the retreat of alpine glaciers. Additionally, extreme weather events create conditions conducive to clusters of insect-, rodent- and water-borne diseases. Accelerating climate change carries profound threats for public health and society.  相似文献   

10.
Hao  Rongzhang  Liu  Yuqi  Shen  Wanzhu  Zhao  Rongtao  Jiang  Bo  Song  Hongbin  Yan  Muyang  Ma  Hui 《中国科学:生命科学英文版》2022,65(8):1504-1516
Science China Life Sciences - Emerging infectious diseases, such as COVID-19, continue to pose significant threats to human beings and their surroundings. In addition, biological warfare,...  相似文献   

11.
The importance of spatial heterogeneity and spatial scales (at a village or neighbourhood scale) has been explored with individual-based models. Our reasoning is based on the Chilean Easter Island (EI) case, where a first dengue epidemic occurred in 2002 among the relatively small population localized in one village. Even in this simple situation, the real epidemic is not consistent with homogeneous models. Conversely, including contact heterogeneity on different scales (intra-households, inter-house, inter-areas) allows the recovery of not only the EI epidemiological curve but also the qualitative patterns of Brazilian urban dengue epidemic in more complex situations.  相似文献   

12.
Congenital heart defects affect nearly 1% of all newborns and are a significant cause of infant death. Clinical studies have identified a number of congenital heart syndromes associated with mutations in genes that are involved in the complex process of cardiogenesis. The African clawed frog, Xenopus, has been instrumental in studies of vertebrate heart development and provides a valuable tool to investigate the molecular mechanisms underlying human congenital heart diseases. In this review, we discuss the methodologies that make Xenopus an ideal model system to investigate heart development and disease. We also outline congenital heart conditions linked to cardiac genes that have been well studied in Xenopus and describe some emerging technologies that will further aid in the study of these complex syndromes.  相似文献   

13.
14.
In the 1960s and 1970s, many public health experts assumed that infectious diseases could at long last be conquered as had occurred with smallpox. In the last two decades, reports warned that infectious diseases were clearly not a problem of the past. They could not be considered as a unique or isolated event of wild and faraway regions, but penetrated every corner of the globe. Emerging infectious diseases have been recently described as clinically distinct conditions whose incidence in humans has increased regionally or worldwide within the past two decades. Emergence may be due to the introduction of new agents to or the recognition of an existing disease that has gone undetected, and re-emergence may describe the re-appearance of known diseases after a decline in incidence. In this article a global, multidisciplinary and integrated approach in different fields of demography, epidemiology, economy, ecology, anthropology and environment at science has been considered to describe the different determinants responsible for the emergence and re-emergence of infectious diseases.  相似文献   

15.
Since the pandemic of COVID-19 has intensely struck human society, small animal model for this infectious disease is in urgent need for basic and pharmaceutical research. Although several COVID-19 animal models have been identified, many of them show either minimal or inadequate pathophysiology after SARS-CoV-2 challenge. Here, we describe a new and versatile strategy to rapidly establish a mouse model for emerging infectious diseases in one month by multi-route, multi-serotype transduction with recombinant adeno-associated virus (AAV) vectors expressing viral receptor. In this study, the proposed approach enables profound and enduring systemic expression of SARS-CoV-2-receptor hACE2 in wild-type mice and renders them vulnerable to SARS-CoV-2 infection. Upon virus challenge, generated AAV/hACE2 mice showed pathophysiology closely mimicking the patients with severe COVID-19. The efficacy of a novel therapeutic antibody cocktail RBD-chAbs for COVID-19 was tested and confirmed by using this AAV/hACE2 mouse model, further demonstrating its successful application in drug development.  相似文献   

16.
A new epidemic, NTED, has recently occurred in Japan. The cause of NTED is a bacterial superantigen, TSST-1. The aim of the present study was to analyze the change in Vβ2+ T cells reactive to TSST-1 in NTED in order to establish T-cell-targeted diagnostic criteria for NTED. Blood samples from 75 patients with clinically diagnosed NTED were collected from 13 neonatal intensive care units throughout Japan. We investigated the percentages of Vβ2+, Vβ3+ and Vβ12+ T cells and their CD45RO expressions in the samples using flow cytometry. In 18 of the 75 patients, we conducted multiple examinations of the T cells and monitored serial changes. The Vβ2+ T-cell population rapidly changed over three phases of the disease. Whereas the percentage of Vβ2+ T cells was widely distributed over the entire control range, CD45RO expression on Vβ2+ T cells in CD4+ in all 75 patients was consistently higher than the control range. Patients cannot necessarily be diagnosed as having NTED based on expansion of Vβ2+ T cells alone in the early acute phase. Instead, CD45RO expression on specific Vβ2+ cells is a potential diagnostic marker for a rapid diagnosis of NTED. We present three diagnostic categories of NTED. Fifty patients (66.7%) were included in the category 'definitive NTED'. It is important to demonstrate an increase of Vβ2+ T cells in the following phase in cases of 'probable NTED' or 'possible NTED'.  相似文献   

17.
18.
19.
20.
In this article, we summarize the major scientific developments of the last decade on the transmission of infectious agents in multi-host systems. Almost sixty percent of the pathogens that have emerged in humans during the last 30-40 years are of animal origin and about sixty percent of them show an important variety of host species besides humans (3 or more possible host species). In this review, we focus on zoonotic infections with vector-borne transmission and dissect the contrasting effects that a multiplicity of host reservoirs and vectors can have on their disease dynamics. We discuss the effects exerted by host and vector species richness and composition on pathogen prevalence (i.e., reduction, including the dilution effect, or amplification). We emphasize that, in multiple host systems and for vector-borne zoonotic pathogens, host reservoir species and vector species can exert contrasting effect locally. The outcome on disease dynamics (reduced pathogen prevalence in vectors when the host reservoir species is rich and increased pathogen prevalence when the vector species richness increases) may be highly heterogeneous in both space and time. We then ask briefly how a shift towards a more systemic perspective in the study of emerging infectious diseases, which are driven by a multiplicity of hosts, may stimulate further research developments. Finally, we propose some research avenues that take better into account the multi-host species reality in the transmission of the most important emerging infectious diseases, and, particularly, suggest, as a possible orientation, the careful assessment of the life-history characteristics of hosts and vectors in a community ecology-based perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号