首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vacuolar H(+)-ATPase functions as a vacuolar proton pump and is responsible for acidification of intracellular compartments such as the endoplasmic reticulum, Golgi, lysosomes, and endosomes. Previous reports have demonstrated that a 16-kDa subunit (16K) of vacuolar H(+)-ATPase via one of its transmembrane domains, TMD4, strongly associates with beta(1) integrin, affecting beta(1) integrin N-linked glycosylation and inhibiting its function as a matrix adhesion receptor. Because of this dramatic inhibition of beta(1) integrin-mediated HEK-293 cell motility by 16K expression, we investigated the mechanism by which 16 kDa was having this effect. Using HT1080 cells whose alpha(5)beta(1) integrin-mediated adhesion to fibronectin has been extensively studied, the expression of 16 kDa also resulted in reduced cell spreading on fibronectin-coated substrates. A pulse-chase study of beta(1) integrin biosynthesis indicated that 16K expression down-regulated the level of the 110-kDa biosynthetic form of beta(1) integrin (premature form) and, consequently, the level of the 130-kDa form of beta(1) integrin (mature form). Further experiments showed that the normal levels of association between the premature beta(1) integrin form and calnexin were significantly decreased by the expression of either 16 kDa or TMD4. Expression of 16 kDa also resulted in a Triton X-100-insoluble aggregation of an unusual 87-kDa form of beta(1) integrin. Interestingly, both Western blotting and a pulse-chase experiment showed co-immunoprecipitation of calnexin and 16K. These results indicate that 16K expression inhibits beta(1) integrin surface expression and spreading on matrix by a novel mechanism that results in reduced levels of functional beta(1) integrin.  相似文献   

2.
Matrix remodeling by phagocytic fibroblasts is essential for growth and development but the regulatory processes are undefined. We evaluated the impact of spreading on the binding step of collagen phagocytosis with a novel culture system that more closely replicates phagocytosis in vivo than previous models. 3T3 cells were plated on collagen-coated beads, thereby loading only ventral surfaces (adhesion with spreading), or were allowed to spread on collagen films and then loaded with beads on their dorsal surfaces (adhesion without spreading). Ventral surfaces bound three-fold more beads than dorsal surfaces which was accompanied by accelerated phagosomal maturation. Arp3 and cortactin, markers of the actin-associated spreading machinery, strongly accumulated around ventrally but not dorsally loaded beads, suggesting that spreading contributes to enhanced binding of ventral surfaces. Further, ventral surfaces exhibited two-fold more free alpha2beta1 integrins, the major collagen receptors. Notably, compared to cells spread on collagen substrates, spreading cells exhibited a three-fold higher alpha2beta1 mobile fraction which was correlated with limited engagement of ventral receptors by actin filaments. Thus integrin ligation by actin filaments regulates the mobility of collagen receptors which in turn mediates the enhanced binding of collagen beads on spreading surfaces.  相似文献   

3.
Cell types from many tissues respond to changes in substrate stiffness by actively remodeling their cytoskeletons to alter spread area or adhesion strength, and in some cases changing their own stiffness to match that of their substrate. These cell responses to substrate stiffness are linked to substrate-induced changes in the state, localization, and amount of numerous proteins, but detailed evidence for the requirement of specific proteins in these distinct forms of mechanical response are scarce. Here we use microfluidics techniques to produce gels with a gradient of stiffness to show the essential function of filamin A in cell responses to mechanical stimuli and dissociate cell spreading and stiffening by contrasting responses of a pair of human melanoma-derived cell lines that differ in expression of this actin cross-linking protein. M2 melanoma cells null for filamin A do not alter their adherent area in response to increased substrate stiffness when they link to the substrate only through collagen receptors, but change adherent area normally when bound through fibronectin receptors. In contrast, filamin A-replete A7 cells change adherent area on both substrates and respond more strongly to collagen I-coated gels than to fibronectin-coated gels. Strikingly, A7 cells alter their stiffness, as measured by atomic force microscopy, to match the elastic modulus of the substrate immediately adjacent to them on the gradient. M2 cells, in contrast, maintain a constant stiffness on all substrates that is as low as that of A7 cells on the softest gels examined (1000 Pa). Comparison of cell spreading and cell stiffening on the same gradient substrates shows that cell spreading is uncoupled from stiffening. At saturating collagen and fibronectin concentrations, adhesion of M2 cells is reduced compared to that of A7 cells to an extent approximately equal to the difference in adherent area. Filamin A appears to be essential for cell stiffening on collagen, but not for cell spreading on fibronectin. These results have implications for different models of cell protrusion and adhesion and identify a key role for filamin A in altering cellular stiffness that cannot be compensated for by other actin cross-linkers in vivo.  相似文献   

4.
We examined the inhibitory activity of type V collagen on cell attachment and cell growth and the role of stress fibers and beta 1 integrin in cultured human endothelial cells. Human endothelial cells cultured on type V collagen attached temporarily to the substrate and formed stress fibers. However, the cells failed to proliferate and gradually detached from the substrate. After 24 h, the cells on type V collagen lacked discernible stress fibers (F-actin filaments) and exhibited dots in small aggregates of F-actin. In addition, the cells expressed little or no proteins as focal adhesions, including vinculin and beta 1 integrin. In contrast, the cells on fibronectin and type I collagen formed complete F-actin filaments, exhibited sufficient vinculin and beta 1 integrin, and grew logarithmically from 2 days. On the other hand, human smooth muscle cells formed complete F-actin filaments, revealed typical focal adhesions, and started to proliferate rapidly after 24 h on type V collagen as well as on fibronectin and type I collagen. Thus, the disassembly of F-actin filaments was observed as a specific phenomenon in human endothelial cells cultured on type V collagen. Moreover, the F-actin filaments disappeared from endothelial cells treated with cytochalasin D after 24 h and the cells detached from fibronectin and type I collagen with time, a result consistent with the observations on type V collagen. Accordingly, the disassembly of F-actin filaments in focal adhesions may result in the detachment of endothelial cells from type V collagen.  相似文献   

5.
Cell adhesion and spreading on collagen, which are essential processes for development and wound healing in mammals, are mediated by β1 integrins and the actin and intermediate filament cytoskeletons. The mechanisms by which these separate cytoskeletal systems interact to regulate β1 integrins and cell spreading are poorly defined. We previously reported that the actin cross-linking protein filamin A binds the intermediate filament protein vimentin and that these two proteins co-regulate cell spreading. Here we used deletional mutants of filamin A to define filamin A-vimentin interactions and the subsequent phosphorylation and re-distribution of vimentin during cell spreading on collagen. Imaging of fixed and live cell preparations showed that phosphorylated vimentin is translocated to the cell membrane during spreading. Knockdown of filamin A inhibited cell spreading and the phosphorylation and re-distribution of vimentin. Knockdown of filamin A and/or vimentin reduced the cell surface expression and activation of β1 integrins, as indicated by immunoblotting of plasma membrane-associated proteins and shear force assays. In vitro pull-down assays using filamin A mutants showed that both vimentin and protein kinase C? bind to repeats 1-8 of filamin A. Reconstitution of filamin-A-deficient cells with full-length filamin A or filamin A repeats 1-8 restored cell spreading, vimentin phosphorylation, and the cell surface expression of β1 integrins. We conclude that the binding of filamin A to vimentin and protein kinase Cε is an essential regulatory step for the trafficking and activation of β1 integrins and cell spreading on collagen.  相似文献   

6.
We have studied the function and distribution of the alpha 1 beta 1, alpha 5 beta 1 and alpha 6 beta 1 heterodimers on type-1 astrocytes with antibodies specific for integrin subunits (alpha 1, alpha 5, alpha 6, and beta 1). The alpha 1 beta 1 heterodimer mediates adhesion to laminin and collagen, the alpha 5 beta 1 to fibronectin in an RGD- dependent manner. The alpha 5 beta 1 integrin is found in focal contacts in long-term cultures of well-spread astrocytes colocalizing with vinculin and the termini of actin stress fibers. alpha 1 beta 1 heterodimers can occasionally be found as small aggregates within focal contacts but they do not accumulate there. Instead, alpha 1 beta 1 integrins are found in punctate deposits called point contacts which are distributed over the upper and the lower cell surfaces whether laminin, collagen, fibronectin or polylysine is used as a substratum. Unlike focal contacts, point contacts contain clathrin but rarely codistribute with actin or vinculin. Two observations indicate that these point contacts are functional. First, mAb 3A3, directed against the rat alpha 1 subunit, inhibits the attachment of astrocytes to laminin and collagen. Second, during the spreading of astrocytes, a band of point contacts forms around the cell perimeter at a time when no focal contacts are visible. While alpha 1 beta 1 integrins are found only in point contacts in astrocytes, the alpha 6 beta 1 integrin, another laminin receptor, is localized within focal contacts. Moreover, alpha 1 beta 1 heterodimers accumulate in focal contacts in fibroblasts. Thus, the alpha subunit contributes, independent of its ligand, to functional integrin heterodimer accumulation in focal contacts or in point contacts. This accumulation varies among different cell types with apparently identical heterodimers as well as with the motile state (spreading vs. flattened) of the same cells.  相似文献   

7.
Tumor endothelial marker 8 (TEM8) is induced in tumor-associated vasculature and acts as a receptor for Protective Antigen (PA), the cell-binding component of the anthrax toxin determinant for toxin entrance into cells. However, the normal function for TEM8 remains unknown. We show that TEM8 functions as an adhesion molecule mediating cell spreading on immobilized PA and collagen I. The mechanism for TEM8 interaction with collagen I was cell type-specific, because binding to collagen I was abrogated by beta1 integrin function blocking antibody in HEK293 cells, but not in primary synovial rabbit fibroblasts. Binding to PA remained unaffected by the addition of beta1 integrin function blocking antibody. Whereas the extracellular and transmembrane domains of TEM8 were sufficient to provide cell attachment, the intracellular domain was critical for spreading. Fusion of the cytosolic domain of TEM8 to the IL-2 receptor, conferred cell-spreading capability on IL-2 receptor antibody substrates. The cytoplasmic domain mediated linkage with the actin cytoskeleton as it co-precipitated actin and determined partitioning of TEM8 to the actin-containing detergent insoluble cellular fraction. TEM8 anchorage to actin was relevant as spreading was inhibited by the cytoskeleton-disrupting drug cytochalasin D, but persisted in the presence of the microtubule-depolymerizing drug nocodazole, and in cells lacking intermediate filaments. Thus, our results indicate that TEM8 is a new adhesion molecule linking collagen I or PA to the actin cytoskeleton.  相似文献   

8.
I examined the binding kinetics between integrin (alpha(IIb)beta(3)) and purified focal adhesion proteins, including alpha-actinin, filamin, vinculin, talin, and F-actin. Using static light-scatter technique, I observed affinities of the order talin > filamin > F-actin > alpha-actinin > (talin when bound to vinculin) which were lower when integrin was complexed with fibronectin. No binding between integrin and vinculin was detected. The calculated dissociation constants (K(d)) ranged between 0.4 microM and 5 microM. These results in part confirm previously published data using different methods. The modest affinity with which the focal adhesion proteins interact in vitro might be indicative of how cells, e.g., thrombocytes, gain a high degree of versatility and velocity.  相似文献   

9.
In this study, we examined the effects of shark cartilage extract on the attachment and spreading properties and the focal adhesion structure of cultured bovine pulmonary artery endothelial cells. Treatment with cartilage extract resulted in cell detachment from the substratum. Immunofluorescence staining of those treated cells that remained attached showed that, instead of being present in both central and peripheral focal adhesions as in control cells, both integrin alpha(v)beta(3) and vinculin were found only in peripheral focal adhesion and thinner actin filament bundles were seen. In addition to causing cell detachment, cartilage extract partially inhibited the initial adherence of the cells to the substratum in a dose-dependent manner. Integrin alpha(v)beta(3) and vinculin staining of these cells also showed a peripheral focal adhesion distribution pattern. Vitronectin induced cell spreading in the absence of serum, but was blocked by simultaneous incubation with cartilage extract, which was shown to inhibit both integrin alpha(v)beta(3) and vinculin recruitment to focal adhesion and the formation of stress fibers. Dot binding assays showed that these inhibitory effects on cell attachment and spreading were not due to direct binding of cartilage extract components to integrin alpha(v)beta(3) or vitronectin. Shark cartilage chondroitin sulfate had no inhibitory effect on either cell attachment or spreading of endothelial cells. These results show that the inhibitory effects of cartilage extract on cell attachment and spreading are mediated by modification of the organization of focal adhesion proteins.  相似文献   

10.
Calcium-sensing receptors (CaR) regulate cell proliferation, differentiation, and apoptosis through the MAPK pathway. MAPK pathway activation requires the cytoskeletal scaffold protein filamin A. Here we examine the interactions of CaR with filamin A in HEK-293 and M2 or A7 melanoma cells to determine how interactions with filamin A facilitate signaling. Filamin A interacts with CaR through two predicted beta-strands from residues 962 to 981; interactions between filamin A and CaR are greatly enhanced by exposure to 5 mM Ca2+. Truncations or deletions (from 972 to 997 or 962 to 981) of the CaR carboxyl terminus eliminate high affinity interactions with filamin A, but CaR-mediated MAPK pathway activation still occurs. CaR-mediated ERK phosphorylation can be localized to a predicted alpha-helix proximal to the membrane, which has been shown to be important for G protein-mediated signaling (residues 868-879). In M2 cells (-filamin A), CaR expression levels are very low; cotransfection of CaR with filamin A increases total cellular CaR and increases plasma membrane localization of CaR, facilitating CaR signaling to the MAPK pathway; similar results were obtained in HEK-293 cells. Interaction with filamin A increases cellular CaR by preventing CaR degradation, thereby facilitating CaR signaling. In addition, filamin A facilitates signaling to the MAPK pathway even by CaR truncations or deletion mutants that cannot engage in high affinity interactions with filamin A, suggesting the targeting of critical signaling proteins to CaR.  相似文献   

11.
Two integrin-type collagen receptors, alpha(1)beta(1) and alpha(2)beta(1), are structurally very similar. However, cells can concomitantly express the both receptors and they might have independent functions. Here, Chinese hamster ovary (CHO) cells, which lack endogenous collagen receptors, were transfected with either alpha(1) or alpha(2) integrin cDNA. Cells were allowed to adhere to various collagen types and their integrin function was tested by observing the progression of cell spreading. The cells expressing alpha(1)beta(1) integrin could spread on collagen types I, III, IV, and V but not on type II, while alpha(2)beta(1) integrin could mediate cell spreading on collagen types I-V. Type XIII is a transmembrane collagen and its interaction with the integrins has not been previously studied. CHO-alpha1beta1 cells could spread on human recombinant type XIII collagen, unlike CHO-alpha2beta1 cells. Integrins alpha(1)beta(1) and alpha(2)beta(1) recognize collagens with the specific alphaI domains. The alpha(1)I and alpha(2)I domains were produced as recombinant proteins, labeled with europium and used in a sensitive solid-phase binding assay based on time-resolved fluorescence. alpha(1)I domain, unlike the alpha(2)I domain, could attach to type XIII collagen. The results indicate, that alpha(1)beta(1) and alpha(2)beta(1) have different ligand binding specificity. Distinct recognition of different collagen subtypes by the alphaI domains can partially explain the differences seen in cell spreading. However, despite the fact that CHO-alpha1beta1 cells could not spread on type II collagen alpha(1)I domain could bind to this collagen type. Thus, the cell spreading on collagens may also be regulated by factors other than the integrins.  相似文献   

12.
The influence of alphaVbeta3 integrin on MT1-MMP functionality was studied in human breast cancer cells of differing beta3 integrin status. Overexpression of beta3 integrin caused increased cell surface expression of alphaV integrin and increased cellular adhesion to extracellular matrix (ECM) substrates in BT-549, MDA-MB-231 and MCF-7 cells. beta3 integrin expression also enhanced the migration of breast cancer cells on ECM substrates and enhanced collagen gel contraction. In vivo, alphaVbeta3 cooperated with MT1-MMP to increase the growth of MCF-7 cells after orthotopic inoculation in immunocompromised mice, but had no influence on in vitro proliferation. Despite these stimulatory effects, overexpression of beta3 integrin suppressed the type I collagen (Col I) induced MMP-2 activation in all breast cancer cell lines analyzed. This was also evident in extracts from the MCF-7 tumors in vivo, where MMP-2 activation was stimulated by MT1-MMP transfection, but attenuated with beta3 integrin expression. Although our studies confirm important biological effects of alphaVbeta3 integrin on enhancing cell adhesion and migration, ECM remodeling and tumor growth, beta3 integrin caused reduced MMP-2 activation in response to Col I in vitro, which appears to be physiologically relevant, as it was also seen in tumor xenografts in vivo. The reduction of MMP-2 activation (and thus MT1-MMP activity) by alphaVbeta3 in response to Col I may be important in scenarios where cells which are activated for matrix degradation need to preserve some pericellular collagen, perhaps as a substrate for cell adhesion and migration, thus maintaining a balanced level of proteolysis required for efficient tumor growth.  相似文献   

13.
Integrin-extracellular matrix interactions are important determinants of beta cell behaviours. The β1 integrin is a well-known regulator of beta cell activities; however, little is known of its associated α subunits. In the present study, αβ1 integrin expression was examined in the rat insulinoma cell line (INS-1) to identify their role in beta cell survival and function. Seven α subunits associated with β1 integrin were identified, including α1-6 and αV. Among these heterodimers, α3β1 was most highly expressed. Common ligands for the α3β1 integrin, including fibronectin, laminin, collagen I and collagen IV were tested to identify the most suitable matrix for INS-1 cell proliferation and function. Cells exposed to collagen I and IV demonstrated significant increases in adhesion, spreading, cell viability, proliferation, and FAK phosphorylation when compared to cells cultured on fibronectin, laminin and controls. Integrin-dependent attachment also had a beneficial effect on beta cell function, increasing Pdx-1 and insulin gene and protein expression on collagens I and IV, in parallel with increased basal insulin release and enhanced insulin secretion upon high glucose challenge. Furthermore, functional blockade of α3β1 integrin decreased cell adhesion, spreading and viability on both collagens and reduced Pdx-1 and insulin expression, indicating that its interactions with collagen matrices are important for beta cell survival and function. These results demonstrate that specific αβ1 integrin-ECM interactions are critical regulators of INS-1 beta cell survival and function and will be important in designing optimal conditions for cell-based therapies for diabetes treatment.  相似文献   

14.
We describe a novel integrin heterodimer on the surface of the human embryonic kidney cell line 293. This receptor is comprised of alpha v and beta 1 subunits, each of which has been previously found in association with other integrin subunits. This alpha v.beta 1 complex was identified as the predominant vitronectin receptor (VnR) on the surface of 293 cells by immunoprecipitation with antibodies raised against the alpha v subunit. Polymerase chain reaction analysis detected mRNAs for alpha v and beta 1 subunits while no evidence was obtained for beta 2, beta 3, or alpha IIb integrin subunit mRNA. Immunoprecipitation of surface-iodinated proteins with antibodies to alpha v gave bands of 150 and 120 kDa. The 120-kDa band reacted with antibodies to beta 1 in immunoblotting experiments. 293 cells adhere to vitronectin, fibronectin, laminin, and collagen IV, while von Willebrand factor and fibrinogen, known ligands of the VnR (alpha v.beta 3), did not support adhesion. A polyclonal antibody directed against both subunits of the VnR (alpha v, beta 3) inhibits attachment of 293 cells to vitronectin but not to other adhesive proteins. A beta 1-specific monoclonal inhibited attachment to fibronectin, laminin, and collagen IV, known ligands of beta 1 integrins, as well as vitronectin. This novel (alpha v. beta 1) VnR thus appears to mediate cell adhesion exclusively to vitronectin, in contrast to previously described VnRs which have multiple ligands.  相似文献   

15.
Integrin-ligand binding regulates tumor cell motility and invasion. Cell migration also involves the Rho GTPases that control the interplay between adhesion receptors and the cytoskeleton. We evaluated how specific extracellular matrix ligands modulate Rho GTPases and control motility of human squamous cell carcinoma cells. On laminin-5 substrates, the epithelial cells rapidly spread and migrated, but on type I collagen the cells spread slowly and showed reduced motility. We found that RhoA activity was suppressed in cells attached to laminin-5 through the alpha3 integrin receptor. In contrast, RhoA was strongly activated in cells bound to type I collagen and this was mediated by the alpha2 integrin. Inhibiting the RhoA pathway by expression of a dominant-negative RhoA mutant or by directly inhibiting ROCK, reduced focal adhesion formation and enhanced cell migration on type I collagen. Cdc42 and Rac and their downstream target PAK1 were activated following adhesion to laminin-5. PAK1 activation induced by laminin-5 was suppressed by expression of a dominant-negative Cdc42. Moreover, constitutively active PAK1 stimulated migration on collagen I substrates. Our results indicate that in squamous epithelial cells, collagen-alpha2beta1 integrin binding activates RhoA, slowing cell locomotion, whereas laminin-5-alpha3beta1 integrin interaction inhibits RhoA and activates PAK1, stimulating cell migration. The data demonstrate that specific ligand-integrin pairs regulate cell motility differentially by selectively modulating activities of Rho GTPases and their effectors.  相似文献   

16.
Kim H  McCulloch CA 《FEBS letters》2011,585(1):760-22
Cell adhesion, spreading and migration on extracellular matrices are regulated by complex processes that involve the cytoskeleton and a large array of adhesion receptors, including the β1 integrin. Filamin A is a large, multi-domain, homodimeric actin binding protein that contributes to the mechanical stability of cells and interacts with several proteins that regulate cell adhesion including β1 integrin and several protein kinases. Here we review current data on the structure, mechanical properties and intracellular signaling functions of filamin that regulate cell adhesion. We also consider new data showing that interactions of filamin A with intermediate filaments and protein kinase C enable tight regulation of β1 integrin function and consequently early events in cell adhesion and migration on extracellular matrix proteins.  相似文献   

17.
A pulse of short peptides, RGDS and DGEA in the millimolar range, immediately elicits in normal human fibroblasts a transient increase of intracellular Ca2+ ([Ca2+]i). In the present study, we show that this [Ca2+]i occurs in an increasing number of cells as a function of peptides concentration. It is specific of each peptide and inhibited at saturating concentration of the peptide in the culture medium. The [Ca2+]i transient depends on signalling pathways slightly different for DGEA and RGDS involving tyrosine kinase(s) and phosphatase(s), phospholipase C, production of inositol-trisphosphate and release of Ca2+ from the cellular stores. GFOGER, the classical collagen binding peptide of alpha1- alpha2- and alpha11-beta1 integrins, in triple helical or denatured form, does not produce any Ca2+ signal. The [Ca2+]i signalling induced by RGDS and DGEA is inhibited by antibodies against beta1 integrin subunit while that mediated by RGDS is also inhibited by antibodies against the alpha3 integrin. Delay in the acquisition of responsiveness is observed during cell adhesion and spreading on a coat of fibronectin for RGDS or collagen for DGEA or on a coat of the specific integrin-inhibiting antibodies but not by seeding cells on GFOGER or laminin-5. This delay is suppressed specifically by collagenase acting on the collagen coat or trypsin on the fibronectin coat. Our results suggest that free integrins and associated focal complexes generate a Ca2+ signal upon recognition of DGEA and RGDS by different cellular pathways.  相似文献   

18.
The fibroblast integrin alpha11beta1 is a key receptor for fibrillar collagens. To study the potential function of alpha11 in vivo, we generated a null allele of the alpha11 gene. Integrin alpha11(-/-) mice are viable and fertile but display dwarfism with increased mortality, most probably due to severely defective incisors. Mutant incisors are characterized by disorganized periodontal ligaments, whereas molar ligaments appear normal. The primary defect in the incisor ligament leads to halted tooth eruption. alpha11beta1-defective embryonic fibroblasts displayed severe defects in vitro, characterized by (i) greatly reduced cell adhesion and spreading on collagen I, (ii) reduced ability to retract collagen lattices, and (iii) reduced cell proliferation. Analysis of matrix metalloproteinase in vitro and in vivo revealed disturbed MMP13 and MMP14 synthesis in alpha11(-/-) cells. We show that alpha11beta1 is the major receptor for collagen I on mouse embryonic fibroblasts and suggest that alpha11beta1 integrin is specifically required on periodontal ligament fibroblasts for cell migration and collagen reorganization to help generate the forces needed for axial tooth movement. Our data show a unique role for alpha11beta1 integrin during tooth eruption.  相似文献   

19.
Interactions between integrins and tyrosine kinase receptors can modulate a variety of cell functions. We observed a cooperative interaction between the beta(1) integrin and vascular endothelial growth factor receptor-3 (VEGFR-3 or Flt4) that appeared to be required for cell migration. By using VEGFR-3-transfected 293 cells (293/VEGFR-3) or primary dermal microvascular endothelial cells (DMEC), we found that stimulation with either soluble or immobilized extracellular matrix (ECM) proteins, collagen or fibronectin (FN), resulted in the increased tyrosine phosphorylation of VEGFR-3 in the absence of a cognate ligand. This increased tyrosine phosphorylation of VEGFR-3 was diminished by pretreatment with a blocking antibody against the beta(1) integrin. Cross-linking with anti-beta(1) integrin antibody induced a similar degree of tyrosine phosphorylation of VEGFR-3. Stimulation with collagen or FN induced an association between beta(1) integrin and VEGFR-3 in both 293/VEGFR-3 and primary DMEC cells. Collagen or FN-induced tyrosine phosphorylation of VEGFR-3 was inhibited by treatment with cytochalasin D, an inhibitor of actin polymerization. Collagen or FN was able to induce the migration of 293/VEGFR-3 or DMEC cells to a limited extent. However, migration was dramatically enhanced when a gradient of the cognate ligand, VEGF-D, was added. VEGF-D failed to induce cell migration in the absence of ECM proteins. Introducing a mutation at the kinase domain of VEGFR-3 or treatment with blocking antibody against either VEGFR-3 or beta(1) integrin inhibited cell migration induced by ECM and VEGF-D, indicating that signals from both beta(1) integrin and VEGFR-3 are required for this cell function.  相似文献   

20.
We describe a novel interaction between the disintegrin and cysteine-rich (DC) domains of ADAM12 and the integrin alpha7beta1. Integrin alpha7beta1 extracted from human embryonic kidney 293 cells transfected with alpha7 cDNA was retained on an affinity column containing immobilized DC domain of ADAM12. 293 cells stably transfected with alpha7 cDNA adhered to DC-coated wells, and this adhesion was partially inhibited by 6A11 integrin alpha7 function-blocking antibody. The X1 and the X2 extracellular splice variants of integrin alpha7 supported equally well adhesion to the DC protein. Integrin alpha7beta1-mediated cell adhesion to DC had different requirements for Mn2+ than adhesion to laminin. Furthermore, integrin alpha7beta1-mediated cell adhesion to laminin, but not to DC, resulted in efficient cell spreading and phosphorylation of focal adhesion kinase (FAK) at Tyr397. We also show that adhesion of L6 myoblasts to DC is mediated in part by the endogenous integrin alpha7beta1 expressed in these cells. Since integrin alpha7 plays an important role in muscle cell growth, stability, and survival, and since ADAM12 has been implicated in muscle development and regeneration, we postulate that the interaction between ADAM12 and integrin alpha7beta1 may be relevant to muscle development, function, and disease. We also conclude that laminin and the DC domain of ADAM12 represent two functional ligands for integrin alpha7beta1, and adhesion to each of these two ligands via integrin alpha7beta1 triggers different cellular responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号