首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
高丁醇比丙酮丁醇梭菌的选育与应用   总被引:6,自引:0,他引:6  
设计了专一性分离方法,从土样中分离了多株能产生溶剂的梭苗,经多次单细胞分离、纯化,再经亚硝基胍和甲基磺酸乙酯诱变和抗性筛选,获得几株高丁醇的丙酮丁醇梭菌。对高产菌株的性状稳定性、发酵过程、混合原料应用、温度的影响进行了研究。结果证明菌株性状稳定,丁醇产量为总溶剂的70%;过程为典型的丙酮丁醇发酵,对温度可耐受到39-40℃;能利用玉米和薯干,玉米和高梁进行正常发酵。菌株已在百吨生产罐,连续应用一年  相似文献   

2.
以诱变选育的1株突变菌株丙酮丁醇梭菌XY16为对象,对影响该菌发酵特性的相关因素(N源、生长因子、热激)进行研究。结果显示:无机N源乙酸铵比其他N源更有利于丙酮丁醇的发酵,玉米浆或玉米蛋白可以直接替代生长因子进行丙酮丁醇发酵,热激可以提高总溶剂产量,最高可以达到21.28 g/L。该菌还可以同时利用葡萄糖和木糖,当葡萄糖利用完后,木糖才能被有效利用。  相似文献   

3.
4.
稻草酶法水解液的丙酮丁醇发酵   总被引:9,自引:1,他引:9  
利用丙酮丁醇梭菌C375菌株发酵稻草酶法水解液,分别研究了氮源、生长因子PH等因素对发酵的影响。结果表明,在稻草水解液还原糖浓度为4.28%时,总溶剂为12.8g/L,溶剂组成:丁醇:丙酮:乙醇=65.8:23.8:10.4,溶剂生成率为29.9%。  相似文献   

5.
丙酮丁醇梭菌发酵菊芋汁生产丁醇   总被引:4,自引:0,他引:4  
对丙酮丁醇梭菌Clostridium acetobutylicum L7发酵菊芋汁酸水解液生产丁醇进行了初步研究。实验结果表明,以该水解液为底物生产丁醇,不需要添加氮源和生长因子。当水解液初始糖浓度为48.36 g/L时,其发酵性能与以果糖为碳源的对照组基本相同,发酵终点丁醇浓度为8.67 g/L,丁醇、丙酮和乙醇的比例为0.58∶0.36∶0.06,但与以葡萄糖为碳源的对照组相比,发酵时间明显延长,表明该菌株葡萄糖转运能力强于果糖。当水解液初始糖浓度提高到62.87 g/L时,发酵终点残糖浓度从3.09 g/L增加到3.26 g/L,但丁醇浓度却提高到11.21 g/L,丁醇、丙酮和乙醇的比例相应为0.64∶0.29∶0.05,表明适量糖过剩有助于C.acetobutylicum L7胞内代谢从丙酮合成向丁醇合成途径调节;继续提高水解液初始糖浓度,发酵终点残糖浓度迅速升高,丁醇生产的技术经济指标受到明显影响。  相似文献   

6.
丁醇在发酵培养基中的积累所产生的毒性问题是限制丁醇产量的重要因素,然而对于Clostridium acetobutylicum是如何适应丁醇胁迫,进而调节菌体生长和代谢的,目前尚缺乏系统研究,不能全面揭示C.acetobutylicum的丁醇耐受性机制.对丙酮丁醇梭菌丁醇耐受性有关的研究成果进行了综述,旨在深入理解菌株丁醇耐受性发生改变的相关分子基础.希望为进行微生物丁醇耐受性分子机制的改造、提高菌株的丁醇耐受性提供新的研究思路.  相似文献   

7.
添加有机酸对Clostridium acetobutylicum合成丙酮和丁醇的影响   总被引:2,自引:0,他引:2  
为提高丙酮-丁醇梭菌厌氧发酵生产丙酮和丁醇的能力,在发酵过程中添加有机酸(乙酸和丁酸),考察其对菌体生长、溶剂合成影响。实验表明:当添加1.5 g/L乙酸时能够促进菌体的生长,促进丙酮的合成,在600 nm处的最大OD值比参照值高出18.4%,丙酮的最终质量分数提高了21.05%,但不能促进丁醇的合成;当添加1.0g/L丁酸时能够促进菌体生长,促进丁醇的合成,在600 nm处的最大OD比参照值高22.29%,丁醇的最终质量分数比对照组提高了24.32%,但不能促进丙酮的合成。  相似文献   

8.
丙酮丁醇发酵菌的分子遗传改造   总被引:1,自引:0,他引:1  
丙酮丁醇梭菌及拜氏梭菌是重要的ABE(丙酮、丁醇和乙醇)工业生产菌株,其发酵产物中的丙酮和丁醇均为重要的化工原料,汽车发动机试验证明丁醇还是一种性能优于乙醇的极具潜力的生物燃料和燃料添加剂。随着新生物技术的不断发展及工业生产的需求,遗传工程改造不断应用于丙酮丁醇生产菌株。在前人研究及工业实践的基础上,对丙酮丁醇生产菌株的遗传特性及其分子遗传改造取得的进展进行了详细概述。  相似文献   

9.
丙酮丁醇梭菌作为极具潜力的新型生物燃料丁醇的生产菌,受到各国研究学者的广泛关注。通过丙酮丁醇梭菌(ABE)发酵生产丁醇,由于生产成本高,限制了其工业化应用。随着基因组学和分子生物学的快速发展,适用于丙酮丁醇的基因编辑工具不断发展并应用于提高菌株的发酵性能。本文对丙酮丁醇梭菌基因编辑工具和代谢工程改造取得的进展进行综述。  相似文献   

10.
丙酮丁醇梭菌的遗传操作系统   总被引:1,自引:0,他引:1  
董红军  张延平  李寅 《生物工程学报》2010,26(10):1372-1378
丙酮丁醇梭菌是极具潜力的替代燃料——生物丁醇的合成菌,受到各国研究者的普遍关注。丙酮丁醇梭菌菌株改造是生物丁醇产业化进程中的一项重要工作,其中遗传操作是核心内容之一。以下对丙酮丁醇梭菌的遗传操作系统的发展历史、种类和原理进行了综述,分析了目前几种遗传操作系统的局限性,并对其发展进行了展望。  相似文献   

11.
The present study demonstrates a process engineering strategy to achieve high butanol titer and productivity from wild type Clostridium acetobutylicum MTCC 11274. In the first step, two different media were optimized with the objectives of maximizing the biomass and butanol productivity, respectively. In the next step, attributes of these two media compositions were integrated to design a two-stage fed-batch process which resulted in maximal butanol productivity of 0.55 g L−1 h−1 with titer of 13.1 g L−1. Further, two-stage fed-batch process along with combinatorial use of magnesium limitation and calcium supplementation resulted in the highest butanol titer and productivity of 16.5 g L−1 and 0.59 g L−1 h−1, respectively. Finally, integration of the process with gas stripping and modulation of feeding duration resulted in a cumulative butanol titer of 54.3 g L−1 and productivity of 0.58 g L−1 h−1. The strategy opens up possibility of developing a viable butanol bioprocess. © 2019 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2771, 2019.  相似文献   

12.
Extractive acetone-butanol-ethanol (ABE) fermentation was carried out successfully using pervaporation and a low-acid-producing Clostridium acetobutylicum B18. A pervaporation module with 0.17 m(2) of surface area was made of silicone membrane of 240 mum thickness. Pervaporation experiments using make-up solutions showed that butanol and acetone fluxes increased linearly with their concentrations in the aqueous phase. Fickian diffusion coefficients were constants for fixed air flow rates, and increased at higher sweep air flow rates. During batch and fed-batch fermentations, pervaporation at an air flow rate of 8 L/min removed butanol and acetone efficiently. Butanol concentration was maintained below 4.5 g/L even though Clostridium acetobutylicum B18 produced butanol steadily. Pervaporation could not remove organic acids efficiently, but organic acids did not accumulate because strain B18 produced little organic acid and recycled added organic acids efficiently. With pervaporation, glucose consumption rate increased compared to without pervaporation, and up to 160 g/L of glucose was consumed during 80 h. Cell growth was not inhibited by possible salt accumulation or oxygen diffusion through the silicone tubing. The culture volume was maintained relatively constant during fed-batch operation because of an offsetting effect of water and product removal by pervaporation and addition of nutrient supplements. (c) 1994 John Wiley & Sons, Inc.  相似文献   

13.
为降低丙酮-丁醇厌氧梭菌发酵生产丁醇的成本,研究了不同添加量玉米黄浆水对发酵的影响。与葡萄糖培养基相比,在发酵培养基中添加少量玉米黄浆水对发酵产量无显著影响。当添加体积分数为25%的玉米黄浆水时,丙酮、丁醇和乙醇的最终质量浓度分别是0.31、2.70和8.00g/L,总溶剂量为11.01g/L。通过成本核算,每生产1kg溶剂,添加体积分数25%的玉米黄浆水可比葡萄糖培养基节约成本2.11元。  相似文献   

14.
Clostridium acetobutylicum is widely used for the microbial production of butanol in a process known as acetone–butanol–ethanol (ABE) fermentation. However, this process suffers from several disadvantages including high oxygen sensitivity of the bacterium which makes the process complicated and necessitate oxygen elimination in the culture medium. Nesterenkonia sp. strain F has attracted interests as the only known non-Clostridia microorganism with inherent capability of butanol production even in the presence of oxygen. This bacterium is not delimited by oxygen sensitivity, a challenge in butanol biosynthesis, but the butanol titer was far below Clostridia. In this study, Nesterenkonia sp. strain F was cocultivated with C. acetobutylicum to form a powerful “coculture” for butanol production thereby eliminating the need for oxygen removal before fermentation. The response surface method was used for obtaining optimal inoculation amount/time and media formulation. The highest yield, 0.31 g/g ABE (13.6 g/L butanol), was obtained by a coculture initiated with 1.5 mg/L Nesterenkonia sp. strain F and inoculated with 15 mg/L C. acetobutylicum after 1.5 hr in a medium containing 67 g/L glucose, 2.2 g/L yeast extract, 4 g/L peptone, and 1.4% (vol/vol) P2 solution. After butanol toxicity assessment, where Nesterenkonia sp. strain F showed no butanol toxicity, the coculture was implemented in a 2 L fermenter with continual aeration leading to 20 g/L ABE.  相似文献   

15.
Abstract Treatment of Clostridium acetobutylicum with allyl alcohol allowed the selection of mutants which were unable to produce n -butanol, whereas the synthesis of acetone and ethanol was unaffected. Enzymatic investigations revealed that all mutant strains were devoid of butyraldehyde dehydrogenase or showed a very low activity of this enzyme as compared to the wild type.  相似文献   

16.
17.
以抗逆突变株Clostridium beijerinckii IB4为出发菌株,通过常压室温等离子体诱变( ARTP ),刃天青平板初筛,摇瓶发酵复筛,筛选出1株高抗逆高丁比的突变菌株C.beijerinckii IT111。发酵结果表明:该突变菌株利用多种C源时均展现其高丁醇比的特性,以玉米芯酸解糖液为C源时,溶剂产量达到10.5 g/L,丁醇8.0 g/L,丁醇比高达76%。抑制物抗逆性测试结果显示:糠醛和酸类对C.beijerinckii发酵影响较小,酚类物质对C.beijerinckii抑制作用较强,其中以香草醛为最。综上所述,C.beijerinckii IT111是1株极具潜力的利用木质纤维原料制备丁醇的菌株。  相似文献   

18.
Although butanol is a promising biofuel, its fermentative production suffers from inhibition caused by end product toxicity. The in situ removal of butanol from cultures via expanded bed adsorption offers an effective strategy for mitigating the effects of product toxicity while eliminating the need to clarify cultures via microfiltration. The hydrophobic polymer resin Dowex Optipore L‐493 was found to be both an effective butanol adsorbent and suitable for use in expanded bed adsorption. Recirculation rates through the adsorption column were strongly correlated with and ultimately controlled rates of butanol uptake from the media which, reaching as high as 41.1 g/L h, easily exceed those of its production in a typical fermentation. Vacuum application with vapor collection was found to be an effective means of adsorbent regeneration, with an average of 81% butanol recovery possible, with butanol concentrations in the cold trap reaching as high as 85.8 g/L. Integration of expanded bed adsorption with a fed‐batch Clostridium acetobutylicum ATCC 824 fermentation and its continuous operation for 38.5 h enabled the net production (i.e., in solution and adsorbed) of butanol and total solvent products at up to 27.2 and 40.7 g/L of culture, respectively, representing 2.2‐ and 2.3‐fold improvements over conventional batch culture. While adsorbent biofouling was found to be minimal, further investigation of biofouling in longer‐term studies will provide useful and further insight regarding the robustness of the process strategy. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:68–78, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号