首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-Nitrosodimethylamine (NDMA) is a potent carcinogen and an emerging contaminant in groundwater and drinking water. The metabolism of NDMA in mammalian cells has been widely studied, but little information is available concerning the microbial transformation of this compound. The objective of this study was to elucidate the pathway(s) of NDMA biotransformation by Pseudomonas mendocina KR1, a strain that possesses toluene-4-monooxygenase (T4MO). P. mendocina KR1 was observed to initially oxidize NDMA to N-nitrodimethylamine (NTDMA), a novel metabolite. The use of 18O2 and H218O revealed that the oxygen added to NDMA to produce NTDMA was derived from atmospheric O2. Experiments performed with a pseudomonad expressing cloned T4MO confirmed that T4MO catalyzes this initial reaction. The NTDMA produced by P. mendocina KR1 did not accumulate, but rather it was metabolized further to produce N-nitromethylamine (88 to 94% recovery) and a trace amount of formaldehyde (HCHO). Small quantities of methanol (CH3OH) were also detected when the strain was incubated with NDMA but not during incubation with either NTDMA or HCHO. The formation of methanol is hypothesized to occur via a second, minor pathway mediated by an initial α-hydroxylation of the nitrosamine. Strain KR1 did not grow on NDMA or mineralize significant quantities of the compound to carbon dioxide, suggesting that the degradation process is cometabolic.  相似文献   

2.
A spectrophotometric method for the quantitative determination of an enzyme activity resulting in the accumulation of 4-substituted phenols is described in this article. Toluene-4-monooxygenase (T4MO) activity in whole cells of Pseudomonas mendocina KR1 is used to demonstrate this method. This spectrophotometric assay is based on the coupling of T4MO activity with tyrosinase activity. The 4-substituted phenol, produced by the action of T4MO on the aromatic ring of a substituted arene, is a substrate for tyrosinase, which converts phenols to o-quinones. The latter react with the nucleophile 3-methyl-2-benzothiazolinone hydrazone (MBTH) to produce intensely colored products that absorb light maximally at different wavelengths, depending on the phenolic substrate used. The incubation of whole cells of P. mendocina KRI with fluorobenzene resulted in the accumulation of 4-fluorophenol. The coupling of T4MO activity with tyrosinase activity in the presence of fluorobenzene resulted in the formation of a colored product absorbing maximally at 480 nm. The molar absorptivity (epsilon) value for the o-quinone-MBTH adduct formed from 4-fluorophenol was determined experimentally to be 12,827 M(-1) cm(-1) with a linear range of quantification between 2.5 and 75 microM. The whole cell assay was run as a continuous indirect assay. The initial rates of T4MO activity toward fluorobenzene, as determined spectrophotometrically, were 61.8+/-4.4 nmol/min/mg P. mendocina KR1 protein (using mushroom tyrosinase), 64.9+/-4.6 nmol/min/mg P. mendocina KR1 protein (using cell extracts Pseudomonas putida F6), and, as determined by HPLC analysis, 62.6+/-1.4 nmol/min/mg P. mendocina KR1 protein.  相似文献   

3.
4.
The water contaminant N-nitrosodimethylamine (NDMA) is a probable human carcinogen whose appearance in the environment is related to the release of rocket fuel and to chlorine-based disinfection of water and wastewater. Although this compound has been shown to be biodegradable, there is minimal information about the organisms capable of this degradation, and little is understood of the mechanisms or biochemistry involved. This study shows that bacteria expressing monooxygenase enzymes functionally similar to those demonstrated to degrade NDMA in eukaryotes have the capability to degrade NDMA. Specifically, induction of the soluble methane monooxygenase (sMMO) expressed by Methylosinus trichosporium OB3b, the propane monooxygenase (PMO) enzyme of Mycobacterium vaccae JOB-5, and the toluene 4-monooxygenases found in Ralstonia pickettii PKO1 and Pseudomonas mendocina KR1 resulted in NDMA degradation by these strains. In each of these cases, brief exposure to acetylene gas, a suicide substrate for certain monooxygenases, inhibited the degradation of NDMA. Further, Escherichia coli TG1/pBS(Kan) containing recombinant plasmids derived from the toluene monooxygenases found in strains PKO1 and KR1 mimicked the behavior of the parent strains. In contrast, M. trichosporium OB3b expressing the particulate form of MMO, Burkholderia cepacia G4 expressing the toluene 2-monooxygenase, and Pseudomonas putida mt-2 expressing the toluene sidechain monooxygenase were not capable of NDMA degradation. In addition, bacteria expressing aromatic dioxygenases were not capable of NDMA degradation. Finally, Rhodococcus sp. RR1 exhibited the ability to degrade NDMA by an unidentified, constitutively expressed enzyme that, unlike the confirmed monooxygenases, was not inhibited by acetylene exposure.  相似文献   

5.
Several toluene monooxygenase-producing organisms were tested for their ability to oxidize linear alkenes and chloroalkenes three to eight carbons long. Each of the wild-type organisms degraded all of the alkenes that were tested. Epoxides were produced during the oxidation of butene, butadiene, and pentene but not hexene or octadiene. A strain of Escherichia coli expressing the cloned toluene-4-monooxygenase (T4MO) of Pseudomonas mendocina KR1 was able to oxidize butene, butadiene, pentene, and hexene but not octadiene, producing epoxides from all of the substrates that were oxidized. A T4MO-deficient variant of P. mendocina KR1 oxidized alkenes that were five to eight carbons long, but no epoxides were detected, suggesting the presence of multiple alkene-degrading enzymes in this organism. The alkene oxidation rates varied widely (ranging from 0. 01 to 0.33 micromol of substrate/min/mg of cell protein) and were specific for each organism-substrate pair. The enantiomeric purity of the epoxide products also varied widely, ranging from 54 to >90% of a single epoxide enantiomer. In the absence of more preferred substrates, such as toluene or alkenes, the epoxides underwent further toluene monooxygenase-catalyzed transformations, forming products that were not identified.  相似文献   

6.
Chloroform mineralization by toluene-oxidizing bacteria.   总被引:6,自引:4,他引:2       下载免费PDF全文
K McClay  B G Fox    R J Steffan 《Applied microbiology》1996,62(8):2716-2722
Seven toluene-oxidizing bacterial strains (Pseudomonas mendocina KR1, Burkholderia cepacia G4, Pseudomonas putida F1, Pseudomonas pickettii PKO1, and Pseudomonas sp. strains ENVPC5, ENVBF1, and ENV113) were tested for their ability to degrade chloroform (CF). The greatest rate of CF oxidation was achieved with strain ENVBF1 (1.9 nmol/min/mg of cell protein). CF also was oxidized by P. mendocina KR1 (0.48 nmol/min/mg of cell protein), strain ENVPC5 (0.49 nmol/min/mg of cell protein), and Escherichia coli DH510B(pRS202), which contained cloned toluene 4-monooxygenase genes from P. mendocina KR1 (0.16 nmol/min/mg of cell protein). Degradation of [14C]CF and ion analysis of culture extracts revealed that CF was mineralized to CO2 (approximately 30 to 57% of the total products), soluble metabolites (approximately 15%), a total carbon fraction irreversibly bound to particulate cellular constituents (approximately 30%), and chloride ions (approximately 75% of the expected yield). CF oxidation by each strain was inhibited in the presence of trichloroethylene, and acetylene significantly inhibited trichloroethylene oxidation by P. mendocina KR1. Differences in the abilities of the CF-oxidizing strains to degrade other halogenated compounds were also identified. CF was not degraded by B. cepacia G4, P. putida F1, P. pickettii PKO1, Pseudomonas sp. strain ENV113, or P. mendocina KRMT, which contains a tmo mutation.  相似文献   

7.
Toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 was induced by trichloroethylene (TCE), and induction was followed by the degradation of TCE. Higher levels of toluene oxidation activity were achieved in the presence of a supplemental growth substrate such as glutamate, with levels of activity of up to 86% of that observed with toluene-induced cells. Activity in P. mendocina KR1 was also induced by cis-1,2-dichloroethylene, perchloroethylene, chloroethane, hexane, pentane, and octane, but not by trans-1,2-dichloroethylene. Toluene oxidation was not induced by TCE in Burkholderia (Pseudomonas) cepacia G4, P. putida F1, Pseudomonas sp. strain ENV110, or Pseudomonas sp. strain ENV113.  相似文献   

8.
Oxygenases are promising biocatalysts for performing selective hydroxylations not accessible by chemical methods. Whereas toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1 hydroxylates monosubstituted benzenes at the para position and toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 hydroxylates at the ortho position, toluene 3-monooxygenase (T3MO) of Ralstonia pickettii PKO1 was reported previously to hydroxylate toluene at the meta position, producing primarily m-cresol (R. H. Olsen, J. J. Kukor, and B. Kaphammer, J. Bacteriol. 176:3749-3756, 1994). Using gas chromatography, we have discovered that T3MO hydroxylates monosubstituted benzenes predominantly at the para position. TG1/pBS(Kan)T3MO cells expressing T3MO oxidized toluene at a maximal rate of 11.5 +/- 0.33 nmol/min/mg of protein with an apparent Km value of 250 microM and produced 90% p-cresol and 10% m-cresol. This product mixture was successively transformed to 4-methylcatechol. T4MO, in comparison, produces 97% p-cresol and 3% m-cresol. Pseudomonas aeruginosa PAO1 harboring pRO1966 (the original T3MO-bearing plasmid) also exhibited the same product distribution as that of TG1/pBS(Kan)T3MO. TG1/pBS(Kan)T3MO produced 66% p-nitrophenol and 34% m-nitrophenol from nitrobenzene and 100% p-methoxyphenol from methoxybenzene, as well as 62% 1-naphthol and 38% 2-naphthol from naphthalene; similar results were found with TG1/pBS(Kan)T4MO. Sequencing of the tbu locus from pBS(Kan)T3MO and pRO1966 revealed complete identity between the two, thus eliminating any possible cloning errors. 1H nuclear magnetic resonance analysis confirmed the structural identity of p-cresol in samples containing the product of hydroxylation of toluene by pBS(Kan)T3MO.  相似文献   

9.
Aromatic hydroxylations are important bacterial metabolic processes but are difficult to perform using traditional chemical synthesis, so to use a biological catalyst to convert the priority pollutant benzene into industrially relevant intermediates, benzene oxidation was investigated. It was discovered that toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1, toluene 3-monooxygenase (T3MO) of Ralstonia pickettii PKO1, and toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 convert benzene to phenol, catechol, and 1,2,3-trihydroxybenzene by successive hydroxylations. At a concentration of 165 microM and under the control of a constitutive lac promoter, Escherichia coli TG1/pBS(Kan)T4MO expressing T4MO formed phenol from benzene at 19 +/- 1.6 nmol/min/mg of protein, catechol from phenol at 13.6 +/- 0.3 nmol/min/mg of protein, and 1,2,3-trihydroxybenzene from catechol at 2.5 +/- 0.5nmol/min/mg of protein. The catechol and 1,2,3-trihydroxybenzene products were identified by both high-pressure liquid chromatography and mass spectrometry. When analogous plasmid constructs were used, E. coli TG1/pBS(Kan)T3MO expressing T3MO formed phenol, catechol, and 1,2,3-trihydroxybenzene at rates of 3 +/- 1, 3.1 +/- 0.3, and 0.26 +/- 0.09 nmol/min/mg of protein, respectively, and E. coli TG1/pBS(Kan)TOM expressing TOM formed 1,2,3-trihydroxybenzene at a rate of 1.7 +/- 0.3 nmol/min/mg of protein (phenol and catechol formation rates were 0.89 +/- 0.07 and 1.5 +/- 0.3 nmol/min/mg of protein, respectively). Hence, the rates of synthesis of catechol by both T3MO and T4MO and the 1,2,3-trihydroxybenzene formation rate by TOM were found to be comparable to the rates of oxidation of the natural substrate toluene for these enzymes (10.0 +/- 0.8, 4.0 +/- 0.6, and 2.4 +/- 0.3 nmol/min/mg of protein for T4MO, T3MO, and TOM, respectively, at a toluene concentration of 165 microM).  相似文献   

10.
The solvent-tolerant strain Pseudomonas putida DOT-T1E has been engineered for biotransformation of toluene into 4-hydroxybenzoate (4-HBA). P. putida DOT-T1E transforms toluene into 3-methylcatechol in a reaction catalyzed by toluene dioxygenase. The todC1C2 genes encode the alpha and beta subunits of the multicomponent enzyme toluene dioxygenase, which catalyzes the first step in the Tod pathway of toluene catabolism. A DOT-T1EdeltatodC mutant strain was constructed by homologous recombination and was shown to be unable to use toluene as a sole carbon source. The P. putida pobA gene, whose product is responsible for the hydroxylation of 4-HBA into 3,4-hydroxybenzoate, was cloned by complementation of a Pseudomonas mendocina pobA1 pobA2 double mutant. This pobA gene was knocked out in vitro and used to generate a double mutant, DOT-T1EdeltatodCpobA, that was unable to use either toluene or 4-HBA as a carbon source. The tmo and pcu genes from P. mendocina KR1, which catalyze the transformation of toluene into 4-HBA through a combination of the toluene 4-monoxygenase pathway and oxidation of p-cresol into the hydroxylated carboxylic acid, were subcloned in mini-Tn5Tc and stably recruited in the chromosome of DOT-T1EdeltatodCpobA. Expression of the tmo and pcu genes took place in a DOT-T1E background due to cross-activation of the tmo promoter by the two-component signal transduction system TodST. Several independent isolates that accumulated 4-HBA in the supernatant from toluene were analyzed. Differences were observed in these clones in the time required for detection of 4-HBA and in the amount of this compound accumulated in the supernatant. The fastest and most noticeable accumulation of 4-HBA (12 mM) was found with a clone designated DOT-T1E-24.  相似文献   

11.
Methyl bromide (CH3Br) and methyl chloride (CH3Cl) are important precursors for destruction of stratospheric ozone, and oceanic uptake is an important component of the biogeochemical cycle of these methyl halides. In an effort to identify and characterize the organisms mediating halocarbon biodegradation, we surveyed the effect of potential cometabolic substrates on CH3Br biodegradation using a 13CH3Br incubation technique. Toluene (160 to 200 nM) clearly inhibited CH3Br and CH3Cl degradation in seawater samples from the North Atlantic, North Pacific, and Southern Oceans. Furthermore, a marine bacterium able to co-oxidize CH3Br while growing on toluene was isolated from subtropical Western Atlantic seawater. The bacterium, Oxy6, was also able to oxidize o-xylene and the xylene monooxygenase (XMO) pathway intermediate 3-methylcatechol. Patterns of substrate oxidation, lack of acetylene inhibition, and the inability of the toluene 4-monooxygenase (T4MO)-containing bacterium Pseudomonas mendocina KR1 to degrade CH3Br ruled out participation of the T4MO pathway in Oxy6. Oxy6 also oxidized a variety of toluene (TOL) pathway intermediates such as benzyl alcohol, benzylaldehyde, benzoate, and catechol, but the inability of Pseudomonas putida mt-2 to degrade CH3Br suggested that the TOL pathway might not be responsible for CH3Br biodegradation. Molecular phylogenetic analysis identified Oxy6 to be a member of the family Sphingomonadaceae related to species within the Porphyrobacter genus. Although some Sphingomonadaceae can degrade a variety of xenobiotic compounds, this appears to be the first report of CH3Br degradation for this class of organism. The widespread inhibitory effect of toluene on natural seawater samples and the metabolic capabilities of Oxy6 indicate a possible link between aromatic hydrocarbon utilization and the biogeochemical cycle of methyl halides.  相似文献   

12.
Pseudomonas mendocina KR1 grows on toluene as a sole carbon and energy source. A multicomponent oxygenase was partially purified from toluene-grown cells and separated into three protein components. The reconstituted enzyme system, in the presence of NADH and Fe2+, oxidized toluene to p-cresol as the first detectable product. Experiments with p-deutero-toluene led to the isolation of p-cresol which retained 68% of the deuterium initially present in the parent molecule. When the reconstituted enzyme system was incubated with toluene in the presence of 18O2, the oxygen in p-cresol was shown to be derived from molecular oxygen. The results demonstrate that P. mendocina KR1 initiates degradation of toluene by a multicomponent enzyme system which has been designated toluene-4-monooxygenase.  相似文献   

13.
The propanotroph Rhodococcus ruber ENV425 was observed to rapidly biodegrade N-nitrosodimethylamine (NDMA) after growth on propane, tryptic soy broth, or glucose. The key degradation intermediates were methylamine, nitric oxide, nitrite, nitrate, and formate. Small quantities of formaldehyde and dimethylamine were also detected. A denitrosation reaction, initiated by hydrogen atom abstraction from one of the two methyl groups, is hypothesized to result in the formation of n-methylformaldimine and nitric oxide, the former of which decomposes in water to methylamine and formaldehyde and the latter of which is then oxidized further to nitrite and then nitrate. Although the strain mineralized more than 60% of the carbon in [14C]NDMA to 14CO2, growth of strain ENV425 on NDMA as a sole carbon and energy source could not be confirmed. The bacterium was capable of utilizing NDMA, as well as the degradation intermediates methylamine and nitrate, as sources of nitrogen during growth on propane. In addition, ENV425 reduced environmentally relevant microgram/liter concentrations of NDMA to <2 ng/liter in batch cultures, suggesting that the bacterium may have applications for groundwater remediation.N-Nitrosodimethylamine (NDMA) is a potent carcinogen that has recently been detected in groundwater, wastewater, and drinking water (1, 2, 17, 18). It forms as a disinfection byproduct in wastewater and drinking water treated with chloramine and other disinfectants (17, 18, 43). NDMA has also been found to be present in aquifers at several military sites that have used 1,1-dimethylhydrazine, a component of liquid rocket propellant that contained NDMA as an impurity (6, 9). Although there is presently no federal maximum contaminant level for NDMA in drinking water, a risk assessment conducted by the U.S. Environmental Protection Agency suggested that concentrations as low as 0.7 ng/liter can increase lifetime cancer risk by 1 × 10−6 (34). In addition, California currently has a 10 ng/liter notification level for NDMA concentrations in drinking water and has recently recommended an even lower public health goal of 3 ng/liter (3, 20). Thus, the presence of even trace concentrations of this chemical in drinking water represents a potential public health concern.The rates and extents of NDMA biodegradation in natural environments, including surface water, sludges, and soils, are highly variable. In some studies, the compound has been reported to be recalcitrant or only partially biodegraded (16, 30, 31); in others, fairly rapid and extensive biodegradation has been previously observed (2, 13, 22, 40). Few studies have been conducted to examine NDMA biodegradation in groundwater. However, the persistence of NDMA derived originally from 1,1-dimethylhydrazine-based rocket fuel over decades in some groundwater aquifers (e.g., Rocky Mountain Arsenal, CO; former Air Force Plant PJKS, CO; and Aerojet Superfund Site, CA) suggests that this molecule can be very recalcitrant (8, 9, 35). At sites where biodegradation has been observed, the organisms responsible and the microbial degradation pathways are largely unknown.The metabolism of NDMA and other nitrosamines by mammals has received extensive study. NDMA requires metabolic activation to the methyldiazonium ion (a strong alkylating agent) to exert its genotoxic effects (1, 19, 34). This activation reaction is catalyzed by specific isozymes of the cytochrome P-450-dependent mixed-function oxidase system and proceeds through an initial α-hydroxylation reaction. Alternately, NDMA can be oxidized by the P-450 system via a denitrosation route, which does not result in the formation of a highly carcinogenic intermediate (11, 28, 37).The bacterial transformation of NDMA has not been studied in significant detail. Several bacteria expressing broad-specificity monooxygenase enzymes have been reported to degrade NDMA via cometabolism. These include the propanotrophs Rhodococcus sp. strain RHA1 (25, 26) and Rhodococcus ruber ENV425 (29) as well as Mycobacterium vaccae JOB5 (25), the methanotroph Methylosinus trichosporium OB3b (42), and the toluene oxidizer Pseudomonas mendocina KR1 (7). We recently characterized the pathway of NDMA transformation used by P. mendocina KR1, a bacterium that utilizes the enzyme toluene-4-monooxygenase (T4MO) to cometabolically degrade NDMA and other anthropogenic pollutants (7, 38). The pathway of NDMA transformation by KR1 differs from the two pathways described for mammals. A majority of the NDMA metabolized by T4MO in this strain is oxidized to N-nitrodimethylamine (NTDMA) and then further to N-nitromethylamine (NTMA), which accumulates as a terminal product (7).In this report, we describe the pathway used by the propanotroph R. ruber ENV425 to catabolize NDMA. This strain was originally isolated from turf soil, where propane was used as the sole carbon source, and was previously reported to oxidize methyl tertiary-butyl ether and other gasoline oxygenates (27). Our data show that the pathway of NDMA degradation mediated by strain ENV425 differs from that mediated by P. mendocina KR1. Rather, the pathway used for transformation of NDMA by ENV425 appears to be similar to the denitrosation pathway catalyzed by various P-450 isozymes in mammals, resulting in the production of nitric oxide (NO), nitrite, nitrate, formaldehyde, formate, and methylamine (MA) (11, 12, 28, 39). A significant fraction of the carbon in the NDMA molecule was released as CO2 by strain ENV425, although growth on NDMA could not be confirmed. However, the bacterium was observed to utilize NDMA as well as the NDMA-degradation intermediates MA and nitrate as sources of nitrogen during growth on propane as a sole carbon and energy source.  相似文献   

14.
The regiospecific oxidation of the polycyclic aromatic hydrocarbons naphthalene and fluorene was examined with Escherichia coli strains expressing wildtype toluene 4-monooxygenase (T4MO) from Pseudomonas mendocina KR1, toluene para-monooxygenase (TpMO) from Ralstonia pickettii PKO1, toluene ortho-monooxygenase (TOM) from Burkholderia cepacia G4, and toluene/ortho-xylene monooxygenase (ToMO) from P. stutzeri OX1. T4MO oxidized toluene (12.1+/-0.8 nmol/min/mg protein at 109 microM), naphthalene (7.7+/-1.5 nmol/min/mg protein at 5 mM), and fluorene (0.68+/-0.04 nmol/min/mg protein at 0.2 mM) faster than the other wildtype enzymes (2-22-fold) and produced a mixture of 1-naphthol (52%) and 2-naphthol (48%) from naphthalene, which was successively transformed to a mixture of 2,3-, 2,7-, 1,7-, and 2,6-dihydroxynaphthalenes (7%, 10%, 20%, and 63%, respectively). TOM and ToMO made 1,7-dihydroxynaphthalene from 1-naphthol, and ToMO made a mixture of 2,3-, 2,6-, 2,7-, and 1,7-dihydroxynaphthalene (26%, 22%, 1%, and 44%, respectively) from 2-naphthol. TOM had no activity on 2-naphthol, and T4MO had no activity on 1-naphthol. To take advantage of the high activity of wildtype T4MO but to increase its regiospecificity on naphthalene, seven engineered enzymes containing mutations in T4MO alpha hydroxylase TmoA were examined; the selectivity for 2-naphthol by T4MO I100A, I100S, and I100G was enhanced to 88-95%, and the selectivity for 1-naphthol was enhanced to 87% and 99% by T4MO I100L and G103S/A107G, respectively, while high oxidation rates were maintained except for G103S/A107G. Therefore, the regiospecificity for naphthalene oxidation was altered to practically pure 1-naphthol or 2-naphthol. All four wildtype monooxygenases were able to oxidize fluorene to different monohydroxylated products; T4MO oxidized fluorene successively to 3-hydroxyfluorene and 3,6-dihydroxyfluorene, which was confirmed by gas chromatography-mass spectrometry and 1H nuclear magnetic resonance analysis. TOM and its variant TomA3 V106A oxidize fluorene to a mixture of 1-, 2-, 3-, and 4-hydroxyfluorene. This is the first report of using enzymes to synthesize 1-, 3-, and 4-hydroxyfluorene, and 3,6-dihydroxyfluorene from fluorene as well as 2-naphthol and 2,6-dihydroxynaphthalene from naphthalene.  相似文献   

15.
16.
Pseudomonas putida mt-2, P. cepacia G4, P. mendocina KR1, and P. putida F1 degrade toluene through different pathways. In this study, we compared the competition behaviors of these strains in chemostat culture at a low growth rate (D = 0.05 h-1), with toluene as the sole source of carbon and energy. Either toluene or oxygen was growth limiting. Under toluene-limiting conditions, P. mendocina KR1, in which initial attack is by monooxygenation of the aromatic nucleus at the para position, outcompeted the other three strains. Under oxygen limitation, P. cepacia G4, which hydroxylates toluene in the ortho position, was the most competitive strain. P. putida mt-2, which metabolizes toluene via oxidation of the methyl group, was the least competitive strain under both growth conditions. The apparent superiority of strains carrying toluene degradation pathways that start degradation by hydroxylation of the aromatic nucleus was also found during competition experiments with pairs of strains of P. cepacia, P. fluorescence, and P. putida that were freshly isolated from contaminated soil.  相似文献   

17.
After discovering that toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1 oxidizes nitrobenzene to 4-nitrocatechol, albeit at a very low rate, this reaction was improved using directed evolution and saturation mutagenesis. Screening 550 colonies from a random mutagenesis library generated by error-prone PCR of tmoAB using Escherichia coli TG1/pBS(Kan)T4MO on agar plates containing nitrobenzene led to the discovery of nitrocatechol-producing mutants. One mutant, NB1, contained six amino acid substitutions (TmoA Y22N, I84Y, S95T, I100S, S400C; TmoB D79N). It was believed that position I100 of the alpha subunit of the hydroxylase (TmoA) is the most significant for the change in substrate reactivity due to previous results in our lab with a similar enzyme, toluene ortho-monooxygenase of Burkholderia cepacia G4. Saturation mutagenesis at this position resulted in the generation of two more nitrocatechol mutants, I100A and I100S; the rate of 4-nitrocatechol formation by I100A was more than 16 times higher than that of wild-type T4MO at 200 microM nitrobenzene (0.13 +/- 0.01 vs. 0.008 +/- 0.001 nmol/min.mg protein). HPLC and mass spectrometry analysis revealed that variants NB1, I100A, and I100S produce 4-nitrocatechol via m-nitrophenol, while the wild-type produces primarily p-nitrophenol and negligible amounts of nitrocatechol. Relative to wild-type T4MO, whole cells expressing variant I100A convert nitrobenzene into m-nitrophenol with a Vmax of 0.61 +/- 0.037 vs. 0.16 +/- 0.071 nmol/min.mg protein and convert m-nitrophenol into nitrocatechol with a Vmax of 3.93 +/- 0.26 vs. 0.58 +/- 0.033 nmol/min.mg protein. Hence, the regiospecificity of nitrobenzene oxidation was changed by the random mutagenesis, and this led to a significant increase in 4-nitrocatechol production. The regiospecificity of toluene oxidation was also altered, and all of the mutants produced 20% m-cresol and 80% p-cresol, while the wild-type produces 96% p-cresol. Interestingly, the rate of toluene oxidation (the natural substrate of the enzyme) by I100A was also higher by 65% (7.2 +/- 1.2 vs. 4.4 +/- 0.3 nmol/min mg protein). Homology-based modeling of TmoA suggests reducing the size of the side chain of I100 leads to an increase in the width of the active site channel, which facilitates access of substrates and promotes more flexible orientations.  相似文献   

18.
19.
The potential of trichloroethylene (TCE) to induce and non-aromatic growth substrates to support TCE degradation in five strains (Pseudomonas mendocina KR1, Ralstonia pickettii PKO1, Pseudomonas putida F1, Burkholderia cepacia G4, B. cepacia PR1) of toluene-oxidizing bacteria was examined. LB broth and acetate did not support TCE degradation in any of the wild-type strains. In contrast, fructose supported the highest specific levels of TCE oxidation observed in each of the strains tested, except B. cepacia G4. We discuss the potential mechanisms and implications of this observation. In particular, cells of P. mendocina KR1 degraded significant amounts of TCE during cell growth on non-aromatic substrates. Apparently, TCE degradation was not completely constrained by any given factor in this microorganism, as was observed with P. putida F1 (TCE was an extremely poor substrate) or B. cepacia G4 (lack of oxygenase induction by TCE). Our results indicate that multiple physiological traits are required to enable useful TCE degradation by toluene-oxidizing bacteria in the absence of aromatic cosubstrates. These traits include oxygenase induction, effective TCE turnover, and some level of resistance to TCE mediated toxicity.  相似文献   

20.
In previous work, we found that an anaerobic sludge efficiently degraded hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), but the role of isolates in the degradation process was unknown. Recently, we isolated a facultatively anaerobic bacterium, identified as Klebsiella pneumoniae strain SCZ-1, using MIDI and the 16S rRNA method from this sludge and employed it to degrade RDX. Strain SCZ-1 degraded RDX to formaldehyde (HCHO), methanol (CH3OH) (12% of total C), carbon dioxide (CO(2)) (72% of total C), and nitrous oxide (N2O) (60% of total N) through intermediary formation of methylenedinitramine (O(2)NNHCH(2)NHNO(2)). Likewise, hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) was degraded to HCHO, CH3OH, and N2O (16.5%) with a removal rate (0.39 micromol. h(-1). g [dry weight] of cells(-1)) similar to that of RDX (0.41 micromol. h(-1). g [dry weight] of cells(-1)) (biomass, 0.91 g [dry weight] of cells. liter(-1)). These findings suggested the possible involvement of a common initial reaction, possibly denitration, followed by ring cleavage and decomposition in water. The trace amounts of MNX detected during RDX degradation and the trace amounts of hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine detected during MNX degradation suggested that another minor degradation pathway was also present that reduced -NO2 groups to the corresponding -NO groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号