首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To analyze the role of the activation potential (a positive shift of the membrane potential which occurs following sperm attachment) in fertilization and development of the sea urchin egg, unfertilized Lytechinus variegatus eggs were voltage clamped at membrane potentials (Em) from +20 to ?90 mV, and then inseminated. Either a fast two electrode voltage clamp, or a single electrode switched voltage clamp was used. The clamp was maintained for 3 to 15 min after initiation of a conductance increase. At Em more positive than +18 mV, even though many sperm may attach, the egg remains completely inert (Jaffe, Nature (London)261, 68–71, 1976). At Em from +17 to ?90 mV, all inseminated eggs elevate normal fertilization envelopes, although substantially increased concentrations of sperm are required at Em from +17 to +12 mV. Whether cleavage occurs depends on the clamped Em. When clamped at Em from +17 to ?25 mV, 100% of activated eggs cleave. However, when clamped at Em from ?26 to ?75 mV the percentage of activated eggs which cleave progressively decreases. At clamped Em between ?76 and ?90 mV, none of the activated eggs cleave. All monospermic voltage clamped eggs that cleave develop to normal swimming blastulae. In all eggs that fail to cleave (clamped at Em more negative than ?30 mV), sperm penetration is blocked, the sperm is lifted off the egg surface as the fertilization envelope rises, and a sperm aster never forms. Preventing formation of the fertilization envelope by prior disruption of the vitelline layer with dithiothreitol does not promote entry of the sperm. In conclusion, preventing the depolarization normally associated with fertilization suppresses sperm entry in the sea urchin egg, yet activation proceeds. Present evidence suggests an effect of the electrical field across the plasma membrane in suppressing sperm entry.  相似文献   

2.
Depolarization of the sea urchin egg's membrane is required for two processes during fertilization: the entry of the fertilizing sperm and the block to polyspermy which prevents the entry of supernumerary sperm. In an immature sea urchin oocyte, the depolarization is very small in response to the attachment of a sperm. The purpose of this study was to determine whether the depolarization evoked by sperm attaching to an oocyte can facilitate sperm entry or induce the block to polyspermy. Individual oocytes of the sea urchin with diameters which ranged from 86 to 102% that of the average diameter for mature eggs from the same female were examined. The oocytes have a membrane potential of -73 +/- 6 mV (SD, n = 80) and a very low input resistance compared to that of mature eggs. Single sperm, following attachment to an oocyte, elicit a brief, small depolarization with a maximum amplitude of 8 +/- 1.4 mV (SE, n = 15), frequently followed by the formation of tiny filament-like fertilization cones, but the sperm fail to enter. If oocytes are voltage-clamped at membrane potentials more negative than -20 mV, following attachment of the sperm small transient inward currents occur, similar filament-like cones form, and the sperm do not enter. When many sperm attach to an oocyte which is not voltage clamped, the depolarizations sum to create a large depolarization with an amplitude of 60 to 80 mV, which shifts the oocyte's membrane potential to a value between -10 and +5 mV; more positive values are not attained. At such membrane potentials, whether the potential is maintained by the summed depolarizations of many attached sperm or by voltage clamp, large fertilization cones form, the sperm enter, and the oocytes can become highly polyspermic. In oocytes voltage clamped at +20 mV, however, both sperm entry and fertilization cone formation are suppressed. Therefore, both types of voltage-dependence for sperm entry are present in oocytes, although the depolarization caused by a single sperm is not large enough to permit its entry, nor is the depolarization caused by many sperm sufficient to prevent the entry of supernumerary sperm.  相似文献   

3.
Multiple oyster spermatozoa can enter sea urchin eggs with or often without fertilization membrane formation (Osanai and Kyozuka, 1982). In the present work, electrical responses of sea urchin (Temnopleurus hardwicki) eggs inseminated with oyster (Crassostrea gigas) sperm were examined and correlated to the failure of monospermy and egg activation. With diluted sperm, a transient depolarization of the membrane with a constant pattern appeared repeatedly and discretely, and the depolarizations (sperm evoked potentials, SEPs) were not associated with fertilization membrane elevation. With dense sperm, the SEPs occurred consecutively, and sometimes an assembled consecutive depolarization was followed by an activation potential associated with cortical granule discharge. When the membrane potential was artificially held at positive levels, the frequency of SEPs was strongly suppressed but not completely blocked. The present results indicate that an individual heterologous spermatozoon neither produces a depolarization sufficient to block additional sperm entry, nor stimulates egg activation, and that simultaneous entries of multiple heterologous spermatozoa, as possibly reflected by the assembled consecutive depolarizations, induce cortical granule discharge and egg activation.  相似文献   

4.
Voltage-clamped mature, jelly-intact Xenopus eggs were used to carefully examine the ionic currents crossing the plasma membrane before, during, and after fertilization. The bulk of the fertilization current was transient, of large amplitude, and reversed at the predicted Cl- reversal potential. However, the large amplitude fertilization current was preceded by a small, step-like increase in holding current. This small increase in holding current is referred to in this paper as Ion to acknowledge its qualitative similarity to the Ion current previously described in the sea urchin. It was observed in both fertilized and artificially activated eggs, and was found to be unaffected by 10 mm tetra-ethyl ammonium (TEA), a concentration found to block K+ currents in Rana pipiens. Current-voltage relationships are presented for the large fertilization potential, and show that the fertilization currents have a marked outward rectification and are voltage sensitive. These properties are in contrast to the total lack of rectification and slight voltage sensitivity seen before or after the fertilization currents. The time required for sperm to fertilize the egg was found to be voltage dependent with a relatively more depolarized voltage requiring a longer time for fertilization to occur. The percentage of eggs blocked with varying potential levels was determined and this information was fitted to a modified Boltzmann equation having a midpoint of -9 mV.  相似文献   

5.
We investigated the electrical properties of the egg of the nemertean worm Cerebratulus, and found evidence that an electrically-mediated polyspermy block operates for a period of about 1 hr after fertilization. At fertilization, in natural or artificial sea water, the membrane potential shifts from its resting level of about -66 mV to a peak of about +43 mV, and in most cases remains greater than 0 mV for more than 1 hr. The average potential during the first 30 min is +22 +/- 8 mV (SD, n = 12). When the external Na+ concentration is reduced from 486 to 51 mM (choline substituted) the fertilization potential amplitude is reduced; the average potential during the first 30 min is -27 +/- 21 mV (SD, n = 5). Eggs inseminated in 51 mM Na+ sea water become polyspermic, indicating that polyspermy prevention depends on an electrically-mediated mechanism. The electrical block is required for about 60 min, since transfer to 51 mM Na+ sea water during this period results in polyspermy. During the first hour following fertilization, the egg is also developing a permanent, nonelectrical block; the degree of polyspermy which results upon transfer to low Na+ sea water decreases progressively with time. The permanent block appears to be at the level of the egg plasma membrane or glycocalyx, since the egg envelope is not a barrier to sperm penetration, nor does its removal induce polyspermy. Electron micrographs show no obvious changes in the morphology of the extracellular layers, plasma membrane or cortex of the egg after fertilization.  相似文献   

6.
Interphylum crossing was examined between sea urchin eggs (Temnopleurus hardwicki) and oyster sperm (Crassostrea gigas). The eggs could receive the spermatozoa with or without cortical change. The fertilized eggs that elevated the fertilization envelope began their embryogenesis. Electron microscopy revealed that oyster spermatozoa underwent acrosome reaction on the sea urchin vitelline coat, and their acrosomal membrane fused with the egg plasma membrane after the appearance of an intricate membranous structure in the boundary between the acrosomal process and the egg cytoplasm. Oyster spermatozoa penetrated sometimes into sea urchin eggs without stimulating cortical granule discharge and consequently without fertilization envelope formation. The organelles derived from oyster spermatozoa seemed to be functionally inactive in the eggs whose cortex remained unchanged.  相似文献   

7.
To investigate the mechanisms that account for the voltage dependence of fertilization and provide an electrical block to polyspermy, we studied cross-fertilizations between three species of amphibians having different degrees of voltage dependence. Anurans, such as the toad Bufo japonicus, as well as the primitive urodele Hynobius nebulosus, have voltage-dependent fertilization; other urodeles, such as Cynops pyrrhogaster, have voltage-independent fertilization (Y. Iwao, 1989, Dev. Biol. 134, 438-445). Entry of Hynobius sperm into Cynops eggs was blocked by clamping the egg's membrane potential at +40 mV, as is the case for fertilization of Hynobius eggs with Hynobius sperm, but not for fertilization of Cynops eggs with Cynops sperm. Therefore, fertilization was voltage dependent in an experimental condition where only the sperm could be contributing this characteristic. The voltage-dependent properties of fertilization between Bufo eggs and Hynobius sperm were also characteristic of the sperm species; fertilization was blocked at +50 mV as in Hynobius fertilization, but not at +20 mV as in Bufo fertilization. These results support the conclusion that the voltage dependence of fertilization results from a component contributed by the sperm.  相似文献   

8.
Y Iwao 《Developmental biology》1989,134(2):438-445
At fertilization, the egg of the primitive urodele, Hynobius nebulosus, produced a fertilization potential which rose from -12 to +47 mV. A similar activation potential was elicited by pricking with a needle, by applying A23187, or by electric shock. The potential change was mediated by an increased permeability to Cl-. Clamping the egg's membrane potential at +40 mV blocked fertilization, while clamping at +20 mV induced polyspermy. These results indicated the occurrence of an electrical polyspermy block, typical of anurans, but atypical of urodeles. Furthermore, Hynobius eggs fertilized by natural mating incorporated only one sperm nucleus, and experimentally polyspermic eggs underwent multipolar division. Accessory sperm did not degenerate in the egg cytoplasm, indicating lack of an intracellular polyspermy block. By comparison, fertilization of Bufo japonicus (anuran) was also voltage dependent, whereas that of Cynops pyrrhogaster (urodele) was voltage independent. Thus polyspermy prevention mechanisms in Hynobius closely resemble those of anuran amphibians and differ from those of higher urodeles.  相似文献   

9.
In response to fertilization, the membrane potential (Em) of the crab egg hyperpolarizes from about -50 mV to about -80 mV in 400 msec. To establish whether this fast hyperpolarization is correlated with physiological polyspermy or conversely mediates an electrical block to polyspermy, we examined the morphological and electrophysiological characteristics of eggs from the crab Maia squinado. Fertilized naturally spawned eggs were found to be physiologically monospermic and their average Em was constant at -77 +/- 0.5 mV. To examine a possible electrical block ensuring this monospermy, unfertilized eggs were voltage clamped at various Em values ranging from +20 to -90 mV, inseminated, and examined morphologically. All eggs clamped at +20 to -65 mV responded by developing a fertilization current, If. It consisted of an outwardly directed K+ current in one or several steps, each caused by a single spermatozoon interacting with the egg membrane. The percentage of eggs clamped at values more negative than -65 mV, which responded at insemination by developing an If, decreased and dropped to 0 at -80 mV. This indicated that the membrane processes occurring during the contact between gametes and eliciting an electrical response by the egg membrane are voltage dependent. Further, the spermatozoon never penetrated into eggs voltage clamped at a Em between +20 and -60 mV and at voltages more negative than -75 mV. Em values between -65 and -75 mV were required for spermatozoon incorporation into the egg, indicating that sperm entry is also voltage dependent. It is proposed that the hyperpolarization of the egg membrane in response to fertilization constitutes a long-lasting electrical block to polyspermy in crab eggs.  相似文献   

10.
Nicotine reduces the amplitude of the fertilization potential in sea urchin eggs, at least in part because it decreases the slope of the current voltage relation of the unfertilized egg membrane. The reduced fertilization potential amplitude provides an electrophysiological explanation for previous observations that nicotine impairs the fast block to polyspermy. The block to polyspermy is also impaired by fertilization in low sodium sea water, a medium which has been reported to reduce fertilization potential amplitude.  相似文献   

11.
The influence of the egg and sperm on the conductance changes at fertilization in the sea urchin were investigated through cross-fertilization of two Hawaiian species, Tripneustes gratilla and Pseudoboletia indiana. The current-voltage (I-V) relation, measured in voltage-clamped eggs at intervals over the period 2-16 min following the rise to a positive membrane potential that signals sperm attachment, differs significantly in the two species. The magnitude of the conductance change depends on the species of the fertilizing sperm in both homologous and heterologous crosses. This supports the hypothesis that currents during this period arise from sperm membrane channels incorporated into the egg at sperm-egg fusion. Measurements of conductance during the first 90 sec, which includes the period of the major inward current correlated with cortical granule breakdown and elevation of the fertilization envelope, showed that the magnitude and timing of the maximum current also differed in the two species. This conductance change presumably involves an activation of egg membrane channels initiated by the sperm and would be expected to be characteristic of the egg species. However, in cross-fertilized eggs the magnitude and timing of the conductance change over this period also depends on the species of the sperm with little identifiable egg contribution, indicating that the fertilizing sperm can modulate the egg response to influence these events.  相似文献   

12.
The plasma membrane of the rabbit egg allows only one sperm to enter the egg during fertilization, but the mechanism of this block to polyspermy is unknown. Electrophysiology and in vitro fertilization techniques were employed in this study to investigate the possibility that a voltage block to polyspermy exists in rabbit eggs. Ovulated zona-intact eggs had a mean membrane potential of -71 +/- 2.1 mV (interior negative). A stereotypic response occurred 12-135 min following in vitro insemination in 19 of 40 eggs. Association of this stereotypic response with the appearance of pronuclei suggested that the electrical response was related to some interaction of gametes. This response consisted of a slow transient 8 +/- 1.5 mV depolarization upon which were superimposed up to 36 repetitive diphasic insemination potentials. Each potential consisted of a brief 2.0 +/- 0.44 mV hyperpolarization followed by a slow 2.5 +/- 0.45 mV depolarization. The small amplitude of the stereotypic response when compared with the large variation of resting potentials suggested that the response was insufficient to block polyspermy by a mechanism dependent upon the magnitude of the rabbit egg membrane potential.  相似文献   

13.
Previous work has established that the polyspermy block in Urechis acts at the level of sperm-egg membrane fusion. (J. Exp. Zool. 196:105). Present results indicate that during the first 5--10 min after insemination the block is mediated by a positive shift in membrane potential (the fertilization potential) elicited by the penetrating sperm, since holding the membrane potential of the unfertilized egg positive by passing current reduces the probability of sperm entry, while progressively reducing the amplitude of the fertilization potential by decreasing external Na+ progressively enhances multiple sperm penetrations. Also, a normal fertilization potential is correlated with a polyspermy block even under conditions (pH 7) in which eggs do not develop. We have investigated the mechanism of the electrical polyspermy block by quantifying the relationship between sperm incorporation, membrane potential and ion fluxes. Results indicate that the polyspermy block is mediated by the electrial change per se and not by the associated fluxes of Na+, Ca++, and H+.  相似文献   

14.
The sequence of ultrastructural events following the onset of the sperm-induced conductance increase in eggs of the sea urchin, Lytechinus variegatus, was investigated. Eggs voltage clamped at -20 mV were fixed 1 to 20 sec after onset of the conductance increase caused by single sperm. Continuity between the plasma membranes of the sperm and egg was first detected 5 sec after onset of the conductance increase. The earliest stages of formation of the fertilization cone coincided with the establishment of continuity of the gamete plasma membranes. At 6 to 8 sec after the initial conductance increase cortical granule dehiscence was first observed in the immediate vicinity where continuity of the gamete plasma membranes had occurred. These observations are consistent with the conclusion that opening of ion channels at fertilization precedes fusion of the sperm and egg plasma membranes, while exocytosis of cortical granules is initiated following fusion of the sperm and egg plasma membranes.  相似文献   

15.
Sea urchin and human sperm contain receptors for neurotransmitters and psychoactive drugs, including cannabinoid receptors (CNRs). Anandamide, arachidonoylethanolamide (AEA), is a lipid-signal molecule that is an endogenous agonist for CNRs. AEA is enyzmatically released from membrane phospholipids when neurons are stimulated. Retrograde AEA signals from depolarized postsynaptic neurons inhibit neurotransmitter release at synapses in mammalian brain. Analogous processes regulate sperm functions during fertilization in sea urchins. AEA and (-)delta9tetrahydrocannabinol [(-)delta9THC], the major psychoactive constituent of marijuana, inhibit fertilization by blocking acrosomal exocytosis/acrosome reactions (AR) stimulated by egg jelly. The acrosome is a Golgi-derived secretory granule in sperm analogous to synaptic vesicles in neurons. AEA and (-)delta9THC do not block ionophore-induced AR, suggesting that they inhibit AR by modulating signal transduction event(s) before opening of ion channels. Unfertilized sea urchin eggs have enzymes required to release AEA from membrane phospholipids. These results indicate that sea urchin eggs may release AEA after activation by the fertilizing sperm. Released AEA may then react with CNRs in nearby sperm to block AR, thereby helping to prevent polyspermy. AEA is present in human seminal plasma, midcycle oviductal fluid, and follicular fluid. Sperm are sequentially exposed to these fluids as they move from the vagina to the site of fertilization in the oviduct. R-methanandamide (AM-356), a metabolically stable AEA analog, and (-)delta9THC modulate capacitation and fertilizing potential of human sperm in vitro. These findings suggest that AEA signaling directly affects sperm functions required for fertilization and provide additional evidence for common signaling processes in neurons and sperm.  相似文献   

16.
In 27% DeBoer's saline (DBS), which yields maximum fertility rates, Xenopus eggs fertilized in vitro are monospermic, regardless of sperm concentration. One block to polyspermy (the “slow” block), described previously, occurs at the fertilization envelope that is elevated in response to the cortical reaction. This paper describes properties of an earlier, “fast” block at the plasma membrane and evaluates the functional significance of the two blocks at physiological sperm concentrations in natural mating conditions. Unfertilized eggs have a resting membrane potential of ?19 mV in 27% DBS. Fertilization triggers a rapid depolarization to +8 mV (the fertilization potential, FP); the potential remains positive for ca. 15 min. Activation of eggs with the ionophore, A23187, produces a slower but similar depolarization (the activation potential, AP). As in other amphibian eggs, the FP appears to result from a net efflux of Cl?, since the peak of the FP (or the AP in ionophore-activated eggs) decreases as the concentration of chloride salts in the medium is increased. In 67% DBS no FP or AP is observed; eggs fertilized in 67% DBS become polyspermic and average 2 sperm entry sites per egg. In the 5–37 mM range, I? and Br?, but not F?, are more effective than Cl? in producing polyspermy. In 20 mM NaI the plasma membrane hyperpolarizes in response to sperm or ionophore; 100% levels of polyspermy and an average of 14 sperm entry sites per egg are observed. NaI does not inhibit or retard elevation of the fertilization envelope; the cortical reaction and fertilization envelope are normal in transmission electron micrographs. In 67% DBS, which also inhibits the fast block, the slow block was estimated to become functional 6–8 min after insemination. Eggs fertilized by natural mating in 20 mM NaI exhibit polyspermy levels of 50–90% and average 5 sperm entry sites per egg. Since eggs become polyspermic when fertilized by natural mating under conditions that inhibit the fast, but not the slow, block to polyspermy, we conclude that the fast block is essential to the prevention of polyspermy at the sperm concentrations normally encountered by the egg.  相似文献   

17.
Microelectrode and tracer flux studies of the Urechis egg during fertilization have shown: (a) insemination causes a fertilization potential; the membrane potential rises from an initial level of -33 +/- 6 mV to a peak at +51 +/- 6 mV (n = 16), falls to a plateau of about +30 mV, then returns to the original resting potential 9 +/- 1 min (n - 10) later; (b) the fertilization potential results from an increase in Na+ permeability, which is amplified during the first 15 s by a Ca++ action potential; (c) the maximum amplitude of the fertilization potential, excluding the first 15 s, changes by 51 mV for a 10-fold change in external [Na+]; (d) in the 10 min period after insemination, both Na+ and Ca++ influxes increase relative to unfertilized egg values by factors of 17 +/- 7 (n = 6) and 34 +/- 14 (n = 4), respectively; the absolute magnitude of the Na+ influx is 16 +/- 6 times larger than that of Ca++; (e) in the absence of sperm these same electrical and ionic events are elicited by trypsin; thus, the ion channels responsible must preexist in the unfertilized egg membrane; (f) increased Na+ influx under conditions of experimentally induced polyspermy indicates that during normal monospermic fertilization, only a fraction of available Na+ channels are opened; we conclude that these channels are sperm-gated; (g) Ca++ influx at fertilization is primarily via the membrane potential-gated channel, because kinetics are appropriate, and influx depends on potential in solutions of varying [Na+], but is independent of number of sperm incorporations in normal sea water.  相似文献   

18.
Peptides from sperm acrosomal protein that initiate egg development   总被引:3,自引:0,他引:3  
How sperm initiate egg development is being investigated with gametes of the marine worm Urechis. Sperm acrosomal protein, previously shown to activate eggs (Gould et al., 1986, Dev. Biol. 117, 306-318; Gould and Stephano, 1987, Science 235, 1654-1656), was enzymatically cleaved into soluble peptide fragments. When this mixture was added to eggs they activated, and parthenogenetic cleavage often occurred. An active peptide (P23) was purified from the mixture and its sequence was determined to be Val-Ala-Lys-Lys-Pro-Lys. Synthetic peptide had the same biological activity. P23 induced eggs to undergo the complete sequence of changes that normally follows fertilization, including the fertilization potential, completion of meiosis, and DNA replication. When a sperm centrosome was introduced into eggs by prefertilization without activation, and the eggs were subsequently activated by P23, they developed normally to trochophore larvae (the contribution of another sperm component is not ruled out by this experiment). P23 covalently coupled to bovine serum albumin also activated eggs, showing that it acted on the external surface of the egg. The peptide did not activate sea urchin eggs, but did cause oyster eggs to undergo germinal vesicle breakdown.  相似文献   

19.
Jaspisin, originally isolated from a marine sponge as an inhibitor of the hatching of the sea urchin (Hemicentrotus pulcherrimus) embryo, causes inhibition of sea urchin fertilization. Electron microscopic examination revealed that the acrosome reaction was induced in jaspisin-treated sperm when they were incubated with an intact egg. The acrosome-reacted sperm bound to the vitelline layer by the acrosomal material surrounding the acrosomal process. However, fusion of the acrosomal process and the egg plasma membrane failed to take place. Membrane potential changes were monitored using eggs preloaded with a membrane potential-sensitive fluorochrome, di-8-ANEPPS. Depolarization of the membrane potential, normally observed in the fertilized egg was not observed in the egg inseminated in the presence of jaspisin, indicating the absence of electrical continuity between the jaspisin-treated egg and sperm. Jaspisin inhibited the activities of matrix metallo-endoproteinase members but not of other types of proteinases. These results provide strong, albeit indirect, evidence that a matrix metallo-endoproteinase(s) is involved in the process of gamete fusion during sea urchin fertilization.  相似文献   

20.
In sea urchin eggs fertilization is accompanied by cortical granule exocytosis, a secretory event thought to be initiated by release of intracellularly sequestered calcium. We have examined the effect of two drugs on this process: chlortetracycline (CTC), a known chelator of intracellular calcium, and 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), an antagonist of intracellular calcium release in both skeletal and smooth muscle. Preincubation of eggs for 10 min with either CTC or TMB-8 blocked sperm entry, inhibited the burst of 45Ca2+ efflux normally seen postinsemination, and prevented fertilization envelope elevation. Half-maximal inhibition occurred with 200 microM CTC and 60 microM TMB-8. Electron microscopy confirmed that cortical granule exocytosis had been blocked, although inhibition was not due to a direct effect on exocytosis. CTC and TMB-8 had no effect on Ca2+-stimulated granule fusion in isolated egg cortices. Rather, these drugs block the early events in egg activation: sperm incorporation and triggering of exocytosis. These two effects appear to be independent since addition of either drug just before insemination permits sperm entry but inhibits calcium release and cortical granule exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号