首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Systematic, large-scale RNA interference (RNAi) approaches are very valuable to systematically investigate biological processes in cell culture or in tissues of organisms such as Drosophila. A notorious pitfall of all RNAi technologies are potential false positives caused by unspecific knock-down of genes other than the intended target gene. The ultimate proof for RNAi specificity is a rescue by a construct immune to RNAi, typically originating from a related species.

Methodology/Principal Findings

We show that primary sequence divergence in areas targeted by Drosophila melanogaster RNAi hairpins in five non-melanogaster species is sufficient to identify orthologs for 81% of the genes that are predicted to be RNAi refractory. We use clones from a genomic fosmid library of Drosophila pseudoobscura to demonstrate the rescue of RNAi phenotypes in Drosophila melanogaster muscles. Four out of five fosmid clones we tested harbour cross-species functionality for the gene assayed, and three out of the four rescue a RNAi phenotype in Drosophila melanogaster.

Conclusions/Significance

The Drosophila pseudoobscura fosmid library is designed for seamless cross-species transgenesis and can be readily used to demonstrate specificity of RNAi phenotypes in a systematic manner.  相似文献   

2.
3.
Targeted gene silencing by RNA interference allows the study of gene function in plants and animals. In cell culture and small animal models, genetic screens can be performed—even tissue-specifically in Drosophila—with genome-wide RNAi libraries. However, a major problem with the use of RNAi approaches is the unavoidable false-positive error caused by off-target effects. Until now, this is minimized by computational RNAi design, comparing RNAi to the mutant phenotype if known, and rescue with a presumed ortholog. The ultimate proof of specificity would be to restore expression of the same gene product in vivo. Here, we present a simple and efficient method to rescue the RNAi-mediated knockdown of two independent genes in Drosophila. By exploiting the degenerate genetic code, we generated Drosophila RNAi Escape Strategy Construct (RESC) rescue proteins containing frequent silent mismatches in the complete RNAi target sequence. RESC products were no longer efficiently silenced by RNAi in cell culture and in vivo. As a proof of principle, we rescue the RNAi-induced loss of function phenotype of the eye color gene white and tracheal defects caused by the knockdown of the heparan sulfate proteoglycan syndecan. Our data suggest that RESC is widely applicable to rescue and validate ubiquitous or tissue-specific RNAi and to perform protein structure–function analysis.  相似文献   

4.
RNA interference (RNAi) is a powerful and widely used approach to investigate gene function, but a major limitation of the approach is the high incidence of non-specific phenotypes that arise due to off-target effects. We previously showed that RNAi-mediated knock-down of pico, which encodes the only member of the MRL family of adapter proteins in Drosophila, resulted in reduction in cell number and size leading to reduced tissue growth. In contrast, a recent study reported that pico knockdown leads to tissue dysmorphology, pointing to an indirect role for pico in the control of wing size. To understand the cause of this disparity we have utilised a synthetic RNAi-resistant transgene, which bears minimal sequence homology to the predicted dsRNA but encodes wild type Pico protein, to reanalyse the RNAi lines used in the two studies. We find that the RNAi lines from different sources exhibit different effects, with one set of lines uniquely resulting in a tissue dysmorphology phenotype when expressed in the developing wing. Importantly, the loss of tissue morphology fails to be complemented by co-overexpression of RNAi-resistant pico suggesting that this phenotype is the result of an off-target effect. This highlights the importance of careful validation of RNAi-induced phenotypes, and shows the potential of synthetic transgenes for their experimental validation.  相似文献   

5.

Background

RNAi technology is widely used to downregulate specific gene products. Investigating the phenotype induced by downregulation of gene products provides essential information about the function of the specific gene of interest. When RNAi is applied in Drosophila melanogaster or Caenorhabditis elegans, often large dsRNAs are used. One of the drawbacks of RNAi technology is that unwanted gene products with sequence similarity to the gene of interest can be down regulated too. To verify the outcome of an RNAi experiment and to avoid these unwanted off-target effects, an additional non-overlapping dsRNA can be used to down-regulate the same gene. However it has never been tested whether this approach is sufficient to reduce the risk of off-targets.

Methodology

We created a novel tool to analyse the occurance of off-target effects in Drosophila and we analyzed 99 randomly chosen genes.

Principal Findings

Here we show that nearly all genes contain non-overlapping internal sequences that do show overlap in a common off-target gene.

Conclusion

Based on our in silico findings, off-target effects should not be ignored and our presented on-line tool enables the identification of two RNA interference constructs, free of overlapping off-targets, from any gene of interest.  相似文献   

6.
Heat shock protein 90 (Hsp-90) is a highly conserved essential protein in eukaryotes. Here we describe the molecular characterisation of hsp-90 from three nematodes, the free-living Caenorhabditis elegans (Ce) and the parasitic worms Brugia pahangi (Bp) and Haemonchus contortus (Hc). These molecules were functionally characterised by rescue of a Ce-daf-21 (hsp-90) null mutant. Our results show a gradient of rescue: the C. elegans endogenous gene provided full rescue of the daf-21 mutant, while Hc-hsp-90 provided partial rescue. In contrast, no rescue could be obtained using a variety of Bp-hsp-90 constructs, despite the fact that Bp-hsp-90 was transcribed and translated in the mutant worms. daf-21 RNA interference (RNAi) experiments were carried out to determine whether knock-down of the endogenous daf-21 mRNA in N2 worms could be complemented by expression of either parasite gene. However neither parasite gene could rescue the daf-21 (RNAi) phenotypes. These results indicate that factors other than the level of sequence identity are important for determining whether parasite genes can functionally complement in C. elegans.  相似文献   

7.
8.
RNA interference (RNAi) is a powerful tool to analyze gene function in mammalian cells. However, the interpretation of RNAi knock-down phenotypes can be hampered by off-target effects or compound phenotypes, as many proteins combine multiple functions within one molecule and coordinate the assembly of multimolecular complexes. Replacing the endogenous protein with ectopic wild-type or mutant forms can exclude off-target effects, preserve complexes and unravel specific roles of domains or modifications. Therefore, we developed a rapid-knock-down–knock-in system for mammalian cells. Stable polyclonal cell lines were generated within 2 weeks by simultaneous selection of two episomal vectors. Together these vectors mediated reconstitution and knock-down in a doxycycline-dependent manner to allow the analysis of essential genes. Depletion was achieved by an artificial miRNA-embedded siRNA targeting the untranslated region of the endogenous, but not the ectopic mRNA. To prove effectiveness, we tested 17 mutants of WDR12, a factor essential for ribosome biogenesis and cell proliferation. Loss-off function phenotypes were rescued by the wild-type and six mutant forms, but not by the remaining mutants. Thus, our system is suitable to exclude off-target effects and to functionally analyze mutants in cells depleted for the endogenous protein.  相似文献   

9.
RNA interference (RNAi) is a powerful tool to analyze gene function in mammalian cells. However, the interpretation of RNAi knock-down phenotypes can be hampered by off-target effects or compound phenotypes, as many proteins combine multiple functions within one molecule and coordinate the assembly of multimolecular complexes. Replacing the endogenous protein with ectopic wild-type or mutant forms can exclude off-target effects, preserve complexes and unravel specific roles of domains or modifications. Therefore, we developed a rapid-knock-down-knock-in system for mammalian cells. Stable polyclonal cell lines were generated within 2 weeks by simultaneous selection of two episomal vectors. Together these vectors mediated reconstitution and knock-down in a doxycycline-dependent manner to allow the analysis of essential genes. Depletion was achieved by an artificial miRNA-embedded siRNA targeting the untranslated region of the endogenous, but not the ectopic mRNA. To prove effectiveness, we tested 17 mutants of WDR12, a factor essential for ribosome biogenesis and cell proliferation. Loss-off function phenotypes were rescued by the wild-type and six mutant forms, but not by the remaining mutants. Thus, our system is suitable to exclude off-target effects and to functionally analyze mutants in cells depleted for the endogenous protein.  相似文献   

10.
RNA interference (RNAi) by means of short hairpin RNA (shRNA) has developed into a powerful tool for loss-of-function analysis in mammalian cells. The principal problem in RNAi experiments is off-target effects, and the most vigorous demonstration of the specificity of shRNA is the rescue of the RNAi effects with a shRNA-resistant target gene. This presents its own problems, including the unpredictable relative expression of shRNA and rescue cDNA in individual cells, and the difficulty in generating stable cell lines. In this report, we evaluated the plausibility of combining the expression of shRNA and rescue cDNA in the same vector. In addition to facilitate the validation of shRNA specificity, this system also considerably simplifies the generation of shRNA-expressing cell lines. Since the compensatory cDNA is under the control of an inducible promoter, stable shRNA-expressing cells can be generated before the knockdown phenotypes are studied by conditionally turning off the rescue protein. Conversely, the rescue protein can be activated after the endogenous protein is completely repressed. This approach is particularly suitable when prolonged expression of either the shRNA or the compensatory cDNA is detrimental to cell growth. This system allows a convenient one-step validation of shRNA and generation of stable shRNA-expressing cells.  相似文献   

11.
Small RNAs recognize, bind, and regulate other complementary cellular RNAs. The introduction of small RNAs to eukaryotic cells frequently results in unintended silencing of related, but not identical, RNAs: a process termed off-target gene silencing. Off-target gene silencing is one of the major concerns during the application of small RNA-based technologies for gene discovery and the treatment of human disease. Off-target gene silencing is commonly thought to be due to inherent biochemical limitations of the RNAi machinery. Here we show that following the introduction of exogenous sources of double-stranded RNA, the nuclear RNAi pathway, but not its cytoplasmic counterparts, is the primary source of off-target silencing in Caenorhabditis elegans. In addition, we show that during the normal course of growth and development the nuclear RNAi pathway regulates repetitive gene families. Therefore, we speculate that RNAi off-target effects might not be “mistakes” but rather an intentional and genetically programmed aspect of small RNA-mediated gene silencing, which might allow small RNAs to silence rapidly evolving parasitic nucleic acids. Finally, reducing off-target effects by manipulating the nuclear RNAi pathway in vivo might improve the efficacy of small RNA-based technologies.  相似文献   

12.
13.
Small interfering RNAs (siRNAs), the guides that direct RNA interference (RNAi), provide a powerful tool to reduce the expression of a single gene in human cells. Ideally, dominant, gain-of-function human diseases could be treated using siRNAs that specifically silence the mutant disease allele, while leaving expression of the wild-type allele unperturbed. Previous reports suggest that siRNAs can be designed with single nucleotide specificity, but no rational basis for the design of siRNAs with single nucleotide discrimination has been proposed. We systematically identified siRNAs that discriminate between the wild-type and mutant alleles of two disease genes: the human Cu, Zn superoxide dismutase (SOD1) gene, which contributes to the progression of hereditary amyotrophic lateral sclerosis through the gain of a toxic property, and the huntingtin (HTT) gene, which causes Huntington disease when its CAG-repeat region expands beyond approximately 35 repeats. Using cell-free RNAi reactions in Drosophila embryo lysate and reporter assays and microarray analysis of off-target effects in cultured human cells, we identified positions within an siRNA that are most sensitive to mismatches. We also show that purine:purine mismatches imbue an siRNA with greater discriminatory power than other types of base mismatches. siRNAs in which either a G:U wobble or a mismatch is located in the “seed” sequence, the specialized siRNA guide region responsible for target binding, displayed lower levels of selectivity than those in which the mismatch was located 3′ to the seed; this region of an siRNA is critical for target cleavage but not siRNA binding. Our data suggest that siRNAs can be designed to discriminate between the wild-type and mutant alleles of many genes that differ by just a single nucleotide.  相似文献   

14.
15.
RNA interference (RNAi) is revolutionizing functional genomics. However, there are several reasons to be concerned about the specificity and off-target effects of this technique. A recent paper by Kittler et al. describes a straightforward way to validate RNAi specificity, which exploits the increasing availability of bacterial artificial chromosome (BAC) clone resources. Genetic rescue of the RNAi phenotype by BAC transgenesis is the best control yet described for specificity, and has further implications for reverse genetics.  相似文献   

16.
17.
18.
19.
20.
Anticancer agents that have minimal effects on normal cells and tissues are ideal cancer drugs. Here, we show specific inhibition of human cancer cells carrying oncogenic mutations in the epidermal growth factor receptor (EGFR) gene by means of oncogenic allele-specific RNA interference (RNAi), both in vivo and in vitro. The allele-specific RNAi (ASP-RNAi) treatment did not affect normal cells or tissues that had no target oncogenic allele, whereas the suppression of a normal EGFR allele by a conventional in vivo RNAi caused adverse effects, i.e., normal EGFR is vital. Taken together, our current findings suggest that specific inhibition of oncogenic EGFR alleles without affecting the normal EGFR allele may provide a safe treatment approach for cancer patients and that ASP-RNAi treatment may be capable of becoming a safe and effective, anticancer treatment method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号