首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A biocatalytic route for the synthesis of isoniazid, an important first-line antitubercular drug, in aqueous system is presented. The reported bioprocess is a greener method, does not involve any hazardous reagent and takes place under mild reaction conditions. Whole cell amidase of Bacillus smithii strain IITR6b2 having acyltransferase activity was utilized for its ability to transfer acyl group of isonicotinamide to hydrazine–2HCl in aqueous medium. B. smithii strain IITR6b2 possessed 3 folds higher acyltransferase activity as compared to amide hydrolase activity and this ratio was further improved to 4.5 by optimizing concentration of co-substrate hydrazine–2HCl. Various key parameters were optimized and under the optimum reaction conditions of pH (7, phosphate buffer 100 mM), temperature (30 °C), substrate/co-substrate concentration (100/1000 mM) and resting cells concentration (2.0 mgdcw/ml), 90.4% conversion of isonicotinamide to isoniazid was achieved in 60 min. Under these conditions, a fed batch process for production of isoniazid was developed and resulted in the accumulation of 439 mM of isoniazid with 87.8% molar conversion yield and productivity of 6.0 g/h/gdcw. These results demonstrated that enzymatic synthesis of isoniazid using whole cells of B. smithii strain IITR6b2 might present an efficient alternative route to the chemical synthesis procedures without the involvement of organic solvent.  相似文献   

2.
Lectin from crude extract of small black kidney bean (Phaseolus vulgaris) was successfully extracted using the reversed micellar extraction (RME). The effects of water content of organic phase (Wo), ionic strength, pH, Aerosol-OT (AOT) concentration and extraction time on the forward extraction and the pH and ionic strength in the backward extraction were studied to optimize the extraction efficiency and purification factor. Forward extraction of lectin was found to be maximum after 15 min of contact using 50 mM AOT in organic phase with Wo 27 and 10 mM citrate-phosphate buffer at pH 5.5 containing 100 mM NaCl in the aqueous phase. Lectin was backward extracted into a fresh aqueous phase using sodium-phosphate buffer (10 mM, pH 7.0) containing 500 mM KCl. The overall yield of the process was 53.28% for protein recovery and 8.2-fold for purification factor. The efficiency of the process was confirmed by gel electrophoresis analysis.  相似文献   

3.
A new method for the synthesis of β-N-(γ-l(+)-glutamyl)-4-carboxyphenylhydrazine, a precursor of agaritine, is presented. This compound was prepared from l-glutamine and 4-hydrazinobenzoic acid through the transpeptidation reaction catalyzed by the Escherichia coli γ-glutamyltransferase. The optimum reaction conditions for the production of β-N-(γ-l(+)-glutamyl)-4-carboxyphenylhydrazine were 50 mM l-glutamine, 500 mM 4-hydrazinobenzoic acid and 40 U γ-glutamyltransferase/mL at pH 8 and 37 °C for 24 h. The product was obtained with a conversion rate of 90% (mol/mol). γ-Glutamyltransferase activity was not inhibited by 4-hydrazinobenzoic acid at concentrations up to 1000 mM. This simple and efficient method would facilitate the synthesis of glutamyl phenylhydrazine analogs, including agaritine.  相似文献   

4.
《Process Biochemistry》2010,45(7):1088-1093
An extracellular thermostable α-galactosidase from Aspergillus parasiticus MTCC-2796 was purified 16.59-fold by precipitation with acetone, followed by sequential column chromatography with DEAE-Sephadex A-50 and Sephadex G-100. The purified enzyme was homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). It was found to be a monomeric protein with a molecular weight of about 67.5 kDa. The purified enzyme showed optimum activity against o-nitrophenyl-α-d-galactopyranoside (oNPG) at pH 5.0 and a temperature of 50 °C. The enzyme was thermostable, showing complete activity even after heating at 65 °C for 30 min. The enzyme showed strict substrate specificity for α-galactosides and hydrolyzed oNPG (Km = 0.83 mM), melibiose (Km = 2.48 mM) and raffinose (Km = 5.83 mM). Among metal ions and reagents tested, Ca2+ and K+ enhanced the enzymatic activity, but Mg2+, Mn2+, ethylenediaminetetraacetic acid (EDTA) and 2-mercaptoethanol showed no effect, while Ag+, Hg2+ and Co2+ strongly inhibited the activity of the enzyme. The enzyme catalyzed the transglycosylation reaction for the synthesis of melibiose.  相似文献   

5.
The glutathione reductase (GR) and thioredoxin reductase (TrxR) are important enzymes of the redox system that aid parasites to maintain an adequate intracellular redox environment. In the present study, the enzyme activity of GR and TrxR was investigated in Setaria cervi (S. cervi). Significant activity of both enzymes was detected in the somatic extract of adult and microfilariae stages of S. cervi. Both GR and TrxR were separated by partial purification using ammonium sulfate fractionation and DEAE ion exchange chromatography suggesting the presence of both glutathione and thioredoxin systems in S. cervi. The enzyme glutathione reductase (ScGR) was purified to homogeneity using affinity and ion exchange chromatography that resulted in 90 fold purification with a yield of 11.54%. The specific activity of the ScGR was 643 U/mg that migrated as a single band on SDS-PAGE. The subunit molecular mass was determined to be ~ 50 kDa while the optimum pH and temperature were found to be 7.0 and 35 °C respectively. The activation energy (Ea) was calculated from the slope of Arrhenius plot as 16.29 ± 1.40 kcal/mol. The Km and Vmax were determined to be 0.27 ± 0.045 mM; 30.30 ± 1.30 U/ml with NADPH and 0.59 ± 0.060 mM; 4.16 ± 0.095 U/ml with GSSG respectively. DHBA, a specific inhibitor for GR has completely inhibited the enzyme activity at 1 μM concentration. The inhibition of ScGR activity with NAI (IC50 0.71 mM), NEM (IC50 0.50 mM) and DEPC (IC50 0.27 mM) suggested the presence of tyrosine, cysteine and histidine residues at its active site. Further studies on characterization and understanding of these antioxidant enzymes may lead to designing of an effective drug against lymphatic filariasis.  相似文献   

6.
This work reports the purification and biochemical characterization of angiotensin I-converting enzyme (ACE) from ostrich (Struthio camelus) lung. The molecular weight of the purified enzyme was approximately evaluated to be 200 kDa and the maximum enzyme activity was observed at pH 7.5. The enzyme activity was increased by detergents of Triton X-100 (0.01%), cetyltrimethylammonium bromide (CTAB) (0.1 and 1 mM) and sodium dodecyl sulfate (SDS) (0.1 mM), while decreased by Triton X-100 (1% and 10%) and SDS (1 mM and 10 mM). The secondary and tertiary structure and activity of ACE in the absence and presence of trifluoroethanol (TFE) were investigated using circular dichroism, fluorescence quenching and UV–visible spectroscopy, respectively. Our results revealed that TFE stabilizes ACE at low concentrations, while acts as a denaturant at higher concentration (20%). The Km, Kcat and Kcat/Km values of ostrich ACE towards FAPGG were 0.8 × 10?4 M, 59,240 min?1 and 74 × 107 min?1 M?1, respectively. The values of IC50 and Ki for captopril were determined to be 36.5 nM and 16.6 nM, respectively. In conclusion, ostrich lung ACE is a new enzyme which could be employed as a candidate for studying ACE structure and its natural or synthetic inhibitors.  相似文献   

7.
In the practical application of Bacillus licheniformis γ-glutamyltranspeptidase (BlGGT), we describe a straightforward enzymatic synthesis of γ-L-glutamyl-S-allyl-L-cysteine (GSAC), a naturally occurring organosulfur compound found in garlic, based on a transpeptidation reaction involving glutamine as the γ-glutamyl donor and S-allyl-L-cysteine as the acceptor. With the help of thin layer chromatography technique and computer-assisted image analysis, we performed the quantitative determination of GSAC. The optimum conditions for a biocatalyzed synthesis of GSAC were 200 mM glutamine, 200 mM S-allyl-L-cysteine, 50 mM Tris–HCl buffer (pH 9.0), and BlGGT at a final concentration of 1.0 U/mL. After a 15-h incubation of the reaction mixture at 60 °C, the GSAC yield for the free and immobilized enzymes was 19.3% and 18.3%, respectively. The enzymatic synthesis of GSAC was repeated under optimal conditions at 1-mmol preparative level. The reaction products together with the commercially available GSAC were further subjected to an ESI-MS/MS analysis. A significant signal with m/z of 291.1 and the protonated fragments at m/z of 73.0, 130.1, 145.0, and 162.1 were observed in the positive ESI-MS/MS spectrum, which is consistent with those of the standard compound. These results confirm the successful synthesis of GSAC from glutamine and S-allyl-L-cysteine by BlGGT.  相似文献   

8.
The family B DNA polymerase gene from the euryarchaeon Thermococcus waiotapuensis (Twa) contains an open reading frame of 4404 bases that encodes 1467 amino acid residues. The gene is split by two intein-coding sequences that forms a continuous open reading frame with the three polymerase exteins. Twa DNA polymerase genes with (whole gene) and without (genetically intein-spliced) inteins were expressed in Escherichia coli Rosetta(DE3)pLysS. The inteins of the expressed whole gene were easily spliced during purification. The molecular mass of the purified Twa DNA polymerase was about 90 kDa, as estimated by SDS-PAGE. The optimal pH for Twa DNA polymerase activity was 6.0 and the optimal temperature was 75 °C. The enzyme was activated by magnesium ions. The half-life of the enzyme at 99 °C was about 4 h. The optimal buffer for PCR with Twa DNA polymerase was 50 mM Tris–HCl (pH 8.2), 2.0 mM MgCl2, 30 mM KCl, 2.0 mM (NH4)2SO4, 0.01% Triton X-100, and 0.005% BSA. The PCR fidelity of Twa DNA polymerase was higher than Pfu, KOD and Vent DNA polymerases. A ratio of 15:1 Taq:Twa DNA polymerase efficiently facilitated long-range PCR.  相似文献   

9.
The aim of the present study is to develop an efficient and cost-effective method for α-arbutin production by using whole-cell of Xanthomonas maltophilia BT-112 as a biocatalyst. Hydroquinone (HQ), substrate for the bioconversion as glucosyl acceptor, was immobilized on H107 macroporous resin to reduce its toxic effect on the cells, and the optimal reaction conditions for α-arbutin synthesis were investigated. When 350 g/L H107 resin (254.5 mM HQ) and 20 g/L (4.2 U/g) of cells were shaken in 10 mL Na2HPO4–KH2PO4 buffer (50 mM, pH 6.5) containing 509 mM sucrose at 35 °C with 150 rpm for 48 h, the final yield of α-arbutin reached 65.9 g/L with a conversion yield of 95.2% based on the amount of HQ supplied. The α-arbutin production was 202% higher than that of the control (free HQ) and the cells maintained its full activity for almost six consecutive batch reactions, indicating a potential for reducing production costs. Additionally, the product was one-step isolated and identified as α-arbutin by 13C NMR and 1H NMR analysis. In conclusion, the combination of whole cells and immobilized hydroquinone (IMHQ) is a promising approach for economical and industrial-scale production of α-arbutin.  相似文献   

10.
《Process Biochemistry》2010,45(8):1348-1354
We produced a lipase from Burkholderia cepacia in solid-state fermentation and used it to catalyze the synthesis of biodiesel in a fixed-bed reactor. In the solid-state fermentation step, a 50:50 (by mass) mixture of sugarcane bagasse and sunflower seed meal gave 234 units of pNPP-hydrolyzing activity per gram of dry solids at 96 h. This fermented solid was lyophilized and delipidated, packed into a column and used to catalyze the synthesis of biodiesel through the ethanolysis of soybean oil in a medium free of co-solvents, with the reaction mixture being continuously circulated through the column. The best conversion was 95% after 46 h, which was obtained at 50 °C, with an alcohol:oil molar ratio of 3:1, alcohol addition in two steps and the addition of 1% of (m/m) water to the reaction medium. This system has potential to decrease the costs of enzyme-catalyzed transesterification reactions.  相似文献   

11.
Enzymatic synthesis of palm oil esters (POE) was carried out via alcoholysis of palm oil (PO) and oleyl alcohol (OA) catalyzed by Lipozyme TL IM. The optimum reaction conditions were: temperature: 60 °C; enzyme load: 24.7 wt%; substrate ratio: 1:3 (PO/OA), impeller speed: 275 rpm and reaction time: 3 h. At the optimum condition, the conversion of POE was 79.54%. Reusability study showed that Lipozyme TL IM could be used for 5 cycles with conversion above 50%. The alcoholysis reaction kinetic follows the Ping-Pong Bi-Bi mechanism characterized by the Vmax, Km(PO), and Km(OA) values of 32.7 mmol/min, 0.3147 mmol/ml and 0.9483 mmol/ml, respectively. The relationship between initial reaction rate and temperature was also established based on the Arrhenius law.  相似文献   

12.
Biosurfactant-based reversed micellar extraction (RME) is an innovative method for separation and purification of biomolecules. In this study, rhamnolipid (RL), a kind of biosurfactant, was firstly adopted to form a novel reversed micellar system for extracting and purifying laccase from Coriolus versicolor crude extract. Several significant factors affecting both forward and backward extraction processes were studied. The appropriate conditions for forward extraction process were: 3.3 mM RL, 50 mM KCl, pH 5.5 and extracting time 40 min. As regards backward extraction process, 250 mM KCl, pH 7.0 and extracting time 40 min were suggested. The corresponding activity recovery (AR) and purification fold (PF) were 92.7% and 4.79, respectively. Electrophoresis analysis indicated that the laccase was successfully purified. After this reversed micellar system was reused three times, the AR and PF declined to 70.8% and 4.35, respectively, indicating that the reversed micellar system could be reused. Comparisons results of synthetic surfactant-based RME and RL-based RME further verified the superiority of RL.  相似文献   

13.
The behaviour of enzymes involved in nitrogen metabolism, as well as oxidative stress generation and heme oxygenase gene and protein expression and activity, were analysed in soybean (Glycine max L.) nodules exposed to 50, 100 and 200 mM NaCl concentrations. A significant increase in lipid peroxidation was found with 100 and 200 mM salt treatments. Moreover, superoxide dismutase, catalase and peroxidase activities were decreased under 100 and 200 mM salt. Nitrogenase activity and leghemeoglobin content were diminished and ammonium content increased only under 200 mM NaCl. At 100 mM NaCl, glutamine synthetase (GS) and NADH-glutamate dehydrogenase (GDH) activities were similar to controls, whereas a significant increase (64%) in NADH-glutamate synthase (GOGAT) activity was observed. GS activity did not change at 200 mM salt treatment, but GOGAT and GDH significantly decreased (40 and 50%, respectively). When gene and protein expression of GS and GOGAT were analysed, it was found that they were positively correlated with enzyme activities. In addition, heme oxygenase (HO) activity, protein synthesis and gene expression were significantly increased under 100 mM salt treatment. Our data demonstrated that the up-regulation of HO, as part of antioxidant defence system, could be protecting the soybean nodule nitrogen fixation and assimilation under saline stress conditions.  相似文献   

14.
(S)-(+)-2-Chlorophenylglycine 1 is an important intermediate in the synthesis of Clopidogrel. A recirculating packed bed reactor (RPBR) was constructed for efficient production of (S)-1 by kinetic resolution of racemic N-phenylacetyl-2- chlorophenylglycine 2 using immobilized penicillin G acylase (PGA). The immobilized PGA exhibited maximum activity at 50 °C and pH 8.0 with (R,S)-2 as substrate. The kinetic constants (Km and vmax) of immobilized PGA were calculated to be 20.61 mM and 83.2 mM/min/g, respectively. The substrate displayed inhibitory effect on immobilized PGA with inhibition constant of 221.23 mM. The immobilized PGA showed a strict enantiospecificity for substrate at different temperature, pH and substrate concentration examined. The performance and productivity of RPBR were evaluated by several critical parameters, including immobilized PGA load, substrate feeding rate, height to diameter ratio and so on. The kinetic resolution process shows higher initial reaction rate and conversion by recycling 100 mL of substrate solution (80 mM) through RPBRs packed with 6.0 g immobilized PGA with a feeding rate of 1.5 mL/min while the H/D ratio was 4.0. The immobilized PGA-catalyzed kinetic resolution of (R,S)-2 was successfully operated in the RPBR for 60 batches, with an average productivity of 1.2 g/L/h for (S)-1 in high optical purity (>97% enantiomeric excess) in semi-continuous operation. The residual (R)-2 can be easily racemized and then used as substrate.  相似文献   

15.
Salvia miltiorrhiza is a medicinal herb commonly used in traditional Chinese medicine for the prevention and treatment of cardiovascular disease. This study investigated the effects of Cardiotonic Pill (CP), a pharmaceutical preparation of Salvia miltiorrhiza, on cardiac myocytes and fibroblasts with respect to the viability, proliferation, and collagen synthesis in these cells under various conditions. A cardiac myocyte line, H9c2, and primarily cultured fibroblasts from rat hearts were incubated with CP over a broad concentration range (50–800 μg/ml) under normal cultures, conditions of ischemia (serum-free culture), and stimulation by angiotensin II (AII, 100 nM), hydrogen peroxide (H2O2, 50–200 μM), or tumor necrosis factor α (TNFα, 40 ng/ml) for 24–48 h. Cell growth, apoptosis, DNA and collagen synthesis, and expression of relevant genes were assessed via cell number study, morphological examination, Annexin-V staining, flow-cytometry, [3H]-thymidine or [3H]-proline incorporation assay, and Western blotting analysis. It was found that (1) at therapeutic (50 μg/ml) and double therapeutic (100 μg/ml) concentrations, CP did not significantly affect normal DNA synthesis and cell growth in these cardiac cells, while at higher (over 4-fold therapeutic) concentrations (200–800 μg/ml), CP decreased DNA synthesis and cell growth and increased cell death; (2) CP treatment (50 μg/ml) significantly inhibited TNFα-induced apoptosis in myocytes, with 12.3±1.46% cells being apoptosis in CP treatment group and 37.0±7.34% in the control (p<0.01), and simultaneously, expression of activated (phosphorylated) Akt protein was increased by about 2 folds in the CP-treated cells; and (3) in cultured fibroblasts, CP significantly reduced AII-induced collagen synthesis in a concentration-dependent manner (by ~50% and ~90% reduction of AII-induced collagen synthesis at 50 and 100 μg/ml, respectively). Thus, Salvia miltiorrhiza preparation CP is physiologically active on cardiac cells. The actions by CP to reduce apoptotic damage in myocytes and collagen synthesis in fibroblasts may help to preserve the heart function and reduce heart failure risk. The actions by CP to inhibit DNA synthesis and cell growth, which occurred at over therapeutic doses, may weaken the ability of heart repair. Further studies are needed to identify the chemical compounds in this herbal product that are responsible for these observed physiological effects.  相似文献   

16.
Thermolysin is industrially used for the synthesis of N-carbobenzoxy-l-aspartyl-l-phenylalanine methyl ester (ZDFM), a precursor of an artificial sweetener, aspartame, from N-carbobenzoxy-l-aspartic acid (ZD) and l-phenylalanine methyl ester (FM). We have reported five thermolysin variants [D150A (Asp150 is replaced with Ala), D150E, D150W, I168A, and N227H] with improved activity generated by site-directed mutagenesis of the residues located at the active site [Kusano et al. J Biochem 2009;145:103–13]. In this study, we analyzed the ZDFM synthesis reaction catalyzed by these variants. Steady-state kinetic analysis revealed that in the ZDFM synthesis reaction at pH 7.5, at 25 °C, the molecular activity kcat values of the variants were 1.6–3.8 times higher than that of the wild-type thermolysin (WT), while their Michaelis constant Km values for ZD and FM were almost the same as those of WT. With the initial concentrations of enzyme, ZD, and FM of 0.1 μM, 5 mM, and 5 mM, respectively, the synthesis of ZDFM catalyzed by these variants reached the maximum level at 4 h while that catalyzed by WT did at 12 h. These results suggest that the five thermolysin variants examined are more suitable than WT for use in ZDFM synthesis.  相似文献   

17.
The activity of Prunus dulcis (sweet almond) β-glucosidase at the expense of p-nitrophenyl-β-d-glucopyranoside at pH 6 was determined, both under steady-state and pre-steady-state conditions. Using crude enzyme preparations, competitive inhibition by 1–5 mM imidazole was observed under both kinetic conditions tested. However, when imidazole was added to reaction mixtures at 0.125–0.250 mM, we detected a significant enzyme activation. To further inspect this effect exerted by imidazole, β-glucosidase was purified to homogeneity. Two enzyme isoforms were isolated, i.e. a full-length monomer, and a dimer containing a full-length and a truncated subunit. Dimeric β-glucosidase was found to perform much better than the monomeric enzyme, independently of the kinetic conditions used to assay enzyme activity. In addition, the sensitivity towards imidazole was found to differ between the two isoforms. While monomeric enzyme was indeed found to be relatively insensitive to imidazole, dimeric β-glucosidase was observed to be significantly activated by 0.125–0.250 mM imidazole under pre-steady-state conditions. Further, steady-state assays revealed that the addition of 0.125 mM imidazole to reaction mixtures increases the Km of dimeric enzyme from 2.3 to 6.7 mM. The activation of β-glucosidase dimer by imidazole is proposed to be exerted via a conformational transition poising the enzyme towards proficient catalysis.  相似文献   

18.
Phenolic content and antioxidant potential of lentil sprouts may be enhanced by treatment of seedlings in abiotic stress conditions without any negative influence on nutritional quality.The health-relevant and nutritional quality of sprouts was improved by elicitation of 2-day-old sprouts with oxidative, osmotic, ion-osmotic and temperature stresses. Among the sprouts studied, those obtained by elicitation with osmotic (600 mM mannitol) and ion-osmotic (300 mM NaCl) shocks had the highest total phenolic content levels: 6.52 and 6.56 mg/g flour, respectively. Oxidative stress significantly enhanced the levels of (+)-catechin and p-coumaric acid. A marked elevation of the chlorogenic and gallic acid contents was also determined for sprouts induced at 4 °C and 40 °C. The elevated phenolic content was translated into the antioxidant potential of sprouts, especially the ability to reduce lipid oxidation. A marked elevation of this ability was determined for seedlings treated with 20 mM, 200 mM H2O2 (oxidative stress) and 600 mM mannitol (osmotic stress); about a 12-fold, 8-fold and 9.5-fold increase in respect to control sprouts. The highest ability to quench free radicals was observed in sprouts induced by osmotic stress (IC50- 4.91 and 5.12 mg/ml for 200 mM and 600 mM mannitol, respectively). The highest total antioxidant activity indexes were determined for sprouts elicited with 20 mM H2O2 and 600 mM mannitol: 4.0 and 3.4, respectively. All studied growth conditions, except induction at 40 °C, caused a significant elevation of resistant starch levels which was also affected in a subsequent reduction of starch digestibility.Improvement of sprout quality by elicitation with abiotic stresses is a cheap and easy biotechnology and it seems to be an alternative to conventional techniques applied to improve the health promoting phytochemical levels and bioactivity of low-processed food.  相似文献   

19.
The graft copolymerization of eucalyptus lignosulfonate calcium (HLS-Ca) from hardwood and acrylic acid (AA) was investigated by using Fenton agent as a coinitiator. The influences of reaction conditions on grafting parameters i.e. product yield (Y%), AA conversion (C%), grafting ratio (G%) and grafting efficiency (GE%) were carefully studied. The effects of the phenolic hydroxyl (Ph-OH) group on the polymerization of AA and grafting reaction were researched. Graft copolymers were identified by the new absorption at 1727 cm?1, more homogenized morphology and higher decomposition temperature after grafted with AA, as illustrated in FTIR, SEM and TG spectra. The optimum synthesis conditions are as follows: H2O2 = 25.2 mol/L, FeCl2 = 63.0 mol/L, T = 50 °C and t = 2 h and the optimum percentages of Y, C, G and GE are 97.61%, 95.23%, 71.29% and 78.85%, respectively. The Ph-OH group of HLS-Ca cannot inhibit the polymerization of AA and is involved in the grafting reaction as an active center.  相似文献   

20.
A mono- and diacylglycerol lipase (MDL) was cloned from Penicillium cyclopium and expressed in Pichia pastoris strain GS115. The recombinant enzyme was named Lipase GH1. High cell density fermentation was performed by culture in a 7.5-L fermenter using BSMG medium, in which the phosphate in basal salt medium was replaced by sodium glycerophosphate (Na2GP). The maximal lipase activity detected was 18,000 U per mL, and total protein content in the fermentation supernatant was 3.94 g per L. The activity of the liquid enzyme remained stable under alkaline conditions at 4 °C for 6 months and was 50% after one year. Lipase GH1 was used for the synthesis of mono- and diacylglycerols (MAGs and DAGs), which are commonly used emulsifiers for industrial applications. A conversion rate of 84% after 24 h of reaction was obtained using glycerol/oleic acid molar ratio 11:1, water content 1.5 wt%, enzyme dosage 80 U per g, and reaction temperature 35 °C. Lipase GH1 was more efficient for the synthesis of MAGs and DAGs than was Lipase G50 (a similar, commercially available lipase derived from Penicillium camemberti) when oleic acid was used as an acyl donor. Lipase GH1 has potential for food emulsifier preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号