首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Srinivasan K  Sharma SS 《Life sciences》2012,90(3-4):154-160
AimsThe role of nitric oxide (NO) and endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of cerebral ischemic/reperfusion (I/R) injury and diabetes. The aim of the study was to investigate the neuroprotective potential of 3-bromo-7-nitroindazole (3-BNI), a potent and selective neuronal nitric oxide synthase (nNOS) inhibitor against ER stress and focal cerebral I/R injury associated with comorbid type 2 diabetes in-vivo.Main methodsType 2 diabetes was induced by feeding high-fat diet and streptozotocin (35 mg/kg) treatment in rats. Focal cerebral ischemia was induced by 2 h middle cerebral artery occlusion (MCAO) followed by 22 h of reperfusion. Immunohistochemistry and western blotting methods were employed for the detection and expression of ER stress/apoptosis markers [78 kDa glucose regulated protein (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)]. TUNEL assay for DNA fragmentation was also performed.Key findingsThe diabetic rats subjected to cerebral I/R had prominent neurological damage and functional deficits compared with sham-operated rats. Massive DNA fragmentation was observed in ischemic penumbral region of diabetic brains. Concomitantly, the enhanced immunoreactivity and expression of ER stress/apoptosis markers were noticed. 3-BNI (30 mg/kg, i.p.) treatment significantly inhibited the cerebral infarct, edema volume and improved functional recovery of neurological deficits. The neuroprotection was further evident by lesser DNA fragmentation with a concomitant reduction of GRP78 and CHOP.SignificanceThe study demonstrates the neuroprotective potential of 3-BNI in diabetic stroke model which may be partly due to inhibition of ER stress pathway involving CHOP.  相似文献   

2.
3.
Glucose-regulated protein of 78 kD (GRP78) is a multifunctional protein belonging to the heat shock protein 70 family. Overexpression of GRP78 triggered by environmental and physiological stresses is positively correlated with the occurrence and progression of various tumors, but the molecular mechanisms have not been well established. The present study indicated that overexpression of GRP78 in colon cancer cells could promote cell-matrix adhesion through the upregulation of fibronectin, integrin-β1 and phosphorylated FAK. Meanwhile, it resulted in a visible epithelial–mesenchymal transition in DLD1 cells, and the Snail-2 played the key role during the process. More importantly, the data indicated that GRP78 overexpression facilitated the expression and secretion of TGF-β1, which further activated the downstream Smad2/3 signaling module to effectuate the cell-matrix adhesion and epithelial–mesenchymal transition. Taken together, this study provides a novel molecular mechanism involving in the effects of GRP78 on colon cancer metastasis.  相似文献   

4.
The p53 protein responds to cellular stress and regulates genes involved in cell cycle, apoptosis, and DNA repair. Under normal conditions, p53 levels are kept low through MDM2-mediated ubiquitination and proteosomal degradation. In search for novel proteins that participate in this regulatory loop, we performed an MDM2 peptide pull-down assay and mass spectrometry to screen for potential interacting partners of MDM2. We identified ribosomal protein S3 (RPS3), whose interaction with MDM2, and notably p53, was further established by His and GST pull-down assays, fluorescence resonance energy transfer and an in situ proximity ligation assay. Additionally, in cells exposed to oxidative stress, p53 levels increased slightly over 24 h, whereas MDM2 levels declined after 6 h exposure, but rose over the next 18 h of exposure. Conversely, in cells exposed to oxidative stress and harboring siRNA to knockdown RPS3 expression, decreased p53 levels and loss of the E3 ubiquitin ligase domain possessed by MDM2 were observed. DNA pull-down assays using a 7,8-dihydro-8-oxoguanine duplex oligonucleotide as a substrate found that RPS3 acted as a scaffold for the additional binding of MDM2 and p53, suggesting that RPS3 interacts with important proteins involved in maintaining genomic integrity.  相似文献   

5.
《Journal of Asia》2014,17(3):303-309
Glucose-regulated protein 78 (GRP78) is a member of the HSP70 family of proteins and is localized in the endoplasmic reticulum (ER) within cells. GRP78 and its gene has been identified in only a few species of insects, and its role is not clear. Here, we identified full-length grp78 cDNA from the Indian meal moth, Plodia interpunctella, and demonstrated the role of grp78 in developmental and physiological processes of the insect. The deduced amino acid sequence of GRP78 contained highly conserved functional motifs of the HSP70 family and the C-terminal motif of KDEL, which is characteristic of ER-localized HSP70. It also showed high identity (93–94%) with GRP78 and related HSP70 proteins of lepidopteran species. Gene expression analysis showed that grp78 mRNA levels were high in the egg, feeding larval, and adult stages, but low in the molting, wandering larval, and pupal stages of development. In a tissue comparison of fifth instar P. interpunctella, grp78 level was higher in the gut than in the integument or fat bodies. Grp78 level decreased greatly when fifth-instar larvae were starved for 48 h, but recovered within 3–6 h after re-feeding. Our data suggest that grp78 is highly associated with dietary energy conditions during development and may play an important role in the nutritional physiology of insects.  相似文献   

6.
Sepsis is characterized by systematic inflammation and contributes to cardiac dysfunction. This study was designed to examine the effect of protein kinase B (Akt) activation on lipopolysaccharide-induced cardiac anomalies and underlying mechanism(s) involved. Mechanical and intracellular Ca2 + properties were examined in myocardium from wild-type and transgenic mice with cardiac-specific chronic Akt overexpression following LPS (4 mg/kg, i.p.) challenge. Akt signaling cascade (Akt, phosphatase and tensin homologue deleted on chromosome ten, glycogen synthase kinase 3 beta), stress signal (extracellular-signal-regulated kinases, c-Jun N-terminal kinases, p38), apoptotic markers (Bcl-2 associated X protein, caspase-3/-9), endoplasmic reticulum (ER) stress markers (glucose-regulated protein 78, growth arrest and DNA damage induced gene-153, eukaryotic initiation factor 2α), inflammatory markers (tumor necrosis factor α, interleukin-1β, interleukin-6) and autophagic markers (Beclin-1, light chain 3B, autophagy-related gene 7 and sequestosome 1) were evaluated. Our results revealed that LPS induced marked decrease in ejection fraction, fractional shortening, cardiomyocyte contractile capacity with dampened intracellular Ca2 + release and clearance, elevated reactive oxygen species (ROS) generation and decreased glutathione and glutathione disulfide (GSH/GSSG) ratio, increased ERK, JNK, p38, GRP78, Gadd153, eIF2α, BAX, caspase-3 and -9, downregulated B cell lymphoma 2 (Bcl-2), the effects of which were significantly attenuated or obliterated by Akt activation. Akt activation itself did not affect cardiac contractile and intracellular Ca2 + properties, ROS production, oxidative stress, apoptosis and ER stress. In addition, LPS upregulated levels of Beclin-1, LC3B and Atg7, while suppressing p62 accumulation. Akt activation did not affect Beclin-1, LC3B, Atg7 and p62 in the presence or absence of LPS. Akt overexpression promoted phosphorylation of Akt and GSK3β. In vitro study using the GSK3β inhibitor SB216763 mimicked the response elicited by chronic Akt activation. Taken together, these data showed that Akt activation ameliorated LPS-induced cardiac contractile and intracellular Ca2 + anomalies through inhibition of apoptosis and ER stress, possibly involving an Akt/GSK3β-dependent mechanism.  相似文献   

7.
Twelve derivatives of oleanolic acid (1) have been synthesized and evaluated for their inhibitory activities against the growth of prostate PC3, breast MCF-7, lung A549, and gastric BGC-823 cancer cells by MTT assays. Within these series of derivatives, compound 17 exhibited the most potent cytotoxicity against PC3 cell line (IC50 = 0.39 μM) and compound 28 displayed the best activity against A549 cell line (IC50 = 0.22 μM). SAR analysis indicates that H-donor substitution at C-3 position of oleanolic acid may be advantageous for improvement of cytotoxicity against PC3, A549 and MCF-7 cell lines.  相似文献   

8.
The N-terminal sequence of the Smac/DIABLO protein is known to be involved in binding to the BIR3 domain of the anti-apoptotic proteins IAPs, antagonizing their action. Short peptides and peptide mimetics based on the first 4-residues of Smac/DIABLO have been demonstrated to re-sensitize resistant cancer cells, over-expressing IAPs, to apoptosis. Based on the well-defined structural basis for this interaction, a small focused library of C-terminal capped Smac/DIABLO-derived peptides was designed in silico using docking to the XIAP BIR3 domain. The top-ranked computational hits were conveniently synthesized employing Solid Phase Synthesis (SPS) on an alkane sulfonamide ‘Safety-Catch’ resin. This novel approach afforded the rapid synthesis of the target peptide library with high flexibility for the introduction of various C-terminal amide-capping groups. The library members were obtained in high yield (>65%) and purity (>85%), upon nucleophilic release from the activated resin by treatment with various amine nucleophiles. In vitro caspase-9 activity reconstitution assays of the peptides in the presence of the recombinant BIR3-domain of human XIAP (500 nM) revealed N-methylalanyl-tertiarybutylglycinyl-4-(R)-phenoxyprolyl-N-biphenylmethyl carboxamide (11a) to be the most potent XIAP BIR3 antagonist of the series synthesized inducing 93% recovery of caspase-9 activity, when used at 1 μM concentration. Compound (11a) also demonstrated moderate cytotoxicity against the breast cancer cell lines MDA-MB-231 and MCF-7, compared to the Smac/DIABLO-derived wild-type peptide sequences that were totally inactive in the same cell lines.  相似文献   

9.
Animal venoms and toxins are potential bioresources that have been known to mankind as a therapeutic tool for more than a century through folk and traditional medicine. The purified “disintegrin protein” (64 kDa) from the venom of the Indian cobra snake (Naja naja) exhibited cytotoxic effects of various types of human cancer cell lines such as breast cancer (MCF-7), lung cancer (A549) and liver cancer (HepG2). In vitro cytotoxicity, DNA fragmentation, an apoptotic assay and a cell cycle analysis were performed to evaluate the anticancer activity of disintegrin against the above cell lines. The IC50 value of disintegrin was determined to be 2.5 ± 0.5 μg/mL, 3.5 ± 0.5 μg/mL, and 3 ± 0.5 μg/mL for the MCF-7, A549 and HepG2 cell lines respectively. Moreover, the increased distribution of G0/G1 and S phase led to decreased populations of cells in the G2/M phase of MCF-7, HepG2 and A549 cells.  相似文献   

10.
A series of cinnamylideneacetophenones were synthesized via a modified Claisen–Schmidt condensation reaction and evaluated for cytotoxicity against breast cancer cells using the Alamar Blue™ assay. Derivatives 17 and 18 bearing a 2-nitro group on the B ring, exhibited sub-micromolar cytotoxicity in MCF-7 cells (IC50 = 71 and 1.9 nM), respectively. Derivative 17 also displayed sub-micromolar (IC50 = 780 nM) cytotoxicity in MDA-MB-468 cells. Additionally, 17 and 18 displayed significantly less cytotoxicity than the chemotherapeutic doxorubicin in non-tumorigenic MCF-10A cells. This study provides evidence supporting the continued development of nitro-substituted cinnamylideneacetophenones as small molecules to treat breast cancer.  相似文献   

11.
Rheumatoid arthritis (RA) is an autoimmune disease that leads to joint destruction. The fibroblast-like synoviocytes (FLS) has a central role on the disease pathophysiology. The present study aimed to examine the role of gastrin-releasing peptide (GRP) and its receptor (GRPR) on invasive behavior of mice fibroblast-like synoviocytes (FLS), as well as to evaluate GRP-induced signaling on PI3K/AKT pathway. The expression of GRPR in FLS was investigated by immunocytochemistry, western blot (WB) and qRT-PCR. The proliferation and invasion were assessed by SRB and matrigel-transwell assay after treatment with GRP and/or RC-3095 (GRPR antagonist), and/or Ly294002 (inhibitor of PI3K/AKT pathway). Finally, AKT phosphorylation was assessed by WB. GRPR protein was detected in FLS and the exposure to GRP increased FLS invasion by nearly two-fold, compared with untreated cells (p < 0.05), while RC-3095 reversed that effect (p < 0.001). GRP also increased phosphorylated AKT expression in FLS. When Ly294002 was added with GRP, it prevented the GRP-induced increased cell invasiveness (p < 0.001). These data suggest that GRPR expression in FLS and that exogenous GRP are able to activate FLS invasion. This effect occurs at least in part through the AKT activation. Therefore, understanding of the GRP/GRPR pathway could be relevant in the development of FLS-targeted therapy for RA.  相似文献   

12.
A series of novel hydroxamic acids bearing artemisinin skeleton was designed and synthesized. Some compounds in this series exhibited moderate inhibition against the whole cell HDAC enzymes. Especially, compound 6g displayed potent cytotoxicity against three human cancer cell lines, including HepG2 (liver cancer), MCF-7 (breast cancer) and HL-60 (leukemia cancer), with IC50 values of 2.50, 2.62 and 1.28 μg/mL, respectively. Docking studies performed with two potent compounds 6a and 6g using Autodock Vina showed that both compounds bound to HDAC2 with relatively high binding affinities from −7.1 to 7.0 kcal/mol compared to SAHA (−7.4 kcal/mol). It was found in this research that most of the target compounds seemed to be more cytotoxic toward blood cancer cells (HL-60) than liver (HepG2), and breast (MCF-7) cancer cells.  相似文献   

13.
14.
A total of 15 novel benzimidazole derivatives were designed, synthesized and evaluated for their SIRT1 and SIRT2 inhibitory activity. All compounds showed better inhibition on SIRT2 as compared to SIRT1. Among these, compound 5j displayed the best inhibitory activity for SIRT1 (IC50 = 58.43 μM) as well as for SIRT2 (IC50 = 45.12 μM). Cell cytotoxicity assays also showed that compound 5j possesses good antitumor activity against two different cancer cell lines derived from breast cancer (MCF-7 and MDA-MB-468). A simple structure–activity-relationship (SAR) study of the newly synthesized benzimidazole derivatives was also discussed.  相似文献   

15.
16.
A series of new DNA-interactive C3-tethered 1,2,3-triazolo-β-carboline derivatives have been synthesized via ‘click’ reaction and evaluated for their in vitro cytotoxicity as well as DNA binding affinity. Interestingly, these hybrids have displayed potent in vitro cytotoxicity in comparison to Harmine against the HT-29 (colon cancer) and HGC-27 (gastric cancer) cell lines. The compounds 7f, 7k, 7n and 7s appear to be more effective against the HGC-27 cell line, among which compound 7f showed the highest cytotoxicity (5.44 ± 0.58, IC50 μM). The compounds 7e and 7f appear to be more active against the HT-29 cell line, among which compound 7f exhibited the highest cytotoxicity (3.67 ± 0.62, IC50 μM). To gain more insight into the DNA-binding ability, spectroscopic techniques such as UV–Visible, fluorescence and circular dichroism studies were performed. Viscosity measurements and molecular docking studies substantiate that these compounds indeed bind to DNA via the minor groove.  相似文献   

17.
Zhu M  He W  Gao E  Lin L  Zhang Y  Dai L  Wang R  Wang B  Wang M 《Life sciences》2012,90(13-14):519-524
AimsA bridging ligand 2,4,6-pyridine tricarboxylic acid (H3ptc) and its manganese(II) complex [Mn(Hptc)(phen)(OH)]n(Hptc = 2,4,6-pyridine tricarboxylic acid, phen = 1,10-phenanthroline) have been synthesized and characterized.Main methodsThe interaction with DNA (HeLa and KB) was carried out by fluorescence spectrum and gel electrophoresis assay. In vitro apoptosis assay and cytotoxicity assay detect the manganese (II) complex interaction with cancer cells.Key findingsFluorescence spectrum demonstrated the ability of the complexes to interact with DNA in an intercalative mode. Gel electrophoresis assay exhibited more effective DNA-cleavage activity. In vitro apoptosis assay of the complexes were examined on HeLa and KB cells, exhibited cytotoxic specificity and a significant cancer cell inhibitory rate.SignificanceThe complex may be a latent antitumor agent as a result of its unique interaction mode with DNA and cancer cells inhibition effect.  相似文献   

18.
Overcoming drug resistance with remarkable cytotoxic activity by anthracene-9,10-dione derivatives would offer a potential therapeutic strategy. In this study, we report the synthesis and the cytotoxicity of a novel set of anthraquninones. (4-(4-Aminobenzylamino)-9,10-dioxo-9,10-dihydroanthracen-1-yl-4-methylbenzenesulfonate) (3) has excellent in vitro cytotoxicity against doxorubicin-resistant cancer cell line (IC50 = 0.8 μM), 20-fold higher than doxorubicin. The cytotoxic effect via G2/M arrest does not appear to be ROS.  相似文献   

19.
A series of novel quinoline–docetaxel analogues (6a6g, 13a13g) were designed and synthesized by introducing bioactive quinoline scaffold to C2′-OH of docetaxel. The anticancer activities of these novel analogues were investigated against different human cancer cell lines including Hela, A549, A2780, MCF-7 and two resistant strains A2780-MDR and MCF-7-MDR. The data showed these analogues possessed similar to better cytotoxicity than docetaxel. Compound 6c was found to be the most potent one, and its IC50 value against MCF-7-MDR was 8.8 nM (IC50 of docetaxel was 180 nM). The work indicated that the introduction of quinolyl group in docetaxel could enhance cytotoxicity and reduce drug-resistance.  相似文献   

20.
Activation of the intrinsic apoptotic pathway represents a major mechanism for breast cancer regression resulting from anti-estrogen therapy. The BH3-only protein BIK is inducible by estrogen-starvation and anti-estrogen treatment and plays an important role in anti-estrogen induced apoptosis of breast cancer cells. BIK is predominantly localized to the endoplasmic reticulum where it regulates BAX/BAK-dependent release of Ca(2+) from the endoplasmic reticulum stores and cooperates with other BH3-only proteins such as NOXA to cause rapid release of cytochrome c from mitochondria and activate apoptosis. BIK is also known to inactivate BCL-2 through complex formation. Previously, we demonstrated that apoptosis triggered by BIK in estrogen-starved human breast cancer cells is suppressed by GRP78, a major endoplasmic reticulum chaperone. Here we described the isolation of a novel clonal human breast cancer cell line (MCF-7/BUS-10) resistant to long-term estrogen deprivation. These cells exhibit elevated level of GRP78, which protects them from estrogen starvation-induced apoptosis. Our studies revealed that overexpression of GRP78 suppresses apoptosis induced by BIK and NOXA, either alone or in combination. Surprisingly, the interaction of GRP78 with BIK does not require its BH3 domain, which has been implicated in all previous BIK protein interactions. We further showed GRP78 and BCL-2 form independent complex with BIK and that increased expression of GRP78 decreases BIK binding to BCL-2. Our findings provide the first evidence that GRP78 can decrease BCL-2 sequestration by BIK at the endoplasmic reticulum, thus uncovering a potential new mechanism whereby GRP78 confers endocrine resistance in breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号