共查询到20条相似文献,搜索用时 15 毫秒
1.
Patrick D. KielyRoland Cusick Douglas F. CallPriscilla A. Selembo John M. ReganBruce E. Logan 《Bioresource technology》2011,102(1):388-394
Conditions in microbial fuel cells (MFCs) differ from those in microbial electrolysis cells (MECs) due to the intrusion of oxygen through the cathode and the release of H2 gas into solution. Based on 16S rRNA gene clone libraries, anode communities in reactors fed acetic acid decreased in species richness and diversity, and increased in numbers of Geobacter sulfurreducens, when reactors were shifted from MFCs to MECs. With a complex source of organic matter (potato wastewater), the proportion of Geobacteraceae remained constant when MFCs were converted into MECs, but the percentage of clones belonging to G. sulfurreducens decreased and the percentage of G. metallireducens clones increased. A dairy manure wastewater-fed MFC produced little power, and had more diverse microbial communities, but did not generate current in an MEC. These results show changes in Geobacter species in response to the MEC environment and that higher species diversity is not correlated with current. 相似文献
2.
A single chamber stackable microbial fuel cell (SCS-MFC) comprising four MFC units was developed. When operated separately,
each unit generated a volumetric power density (Pmax,V) of 26.2 W/m3 at 5.8 mA or 475 mV. The total columbic efficiency was 40% for each unit. Parallel connection of four units produced the
same level of power output (Pmax,V of 22.8 W/m3 at 27 mA), which was approximately four times higher than a single unit alone. Series connection of four units, however,
only generated a maximum power output of 14.7 W/m3 at 730 mV, which was less than the expected value. This energy loss appeared to be caused by lateral current flow between
two units, particularly in the middle of the system. The cathode was found to be the major limiting factor in our system.
Compared to the stacked operation of multiple separate MFCs, our single chamber reactor does not require a delicate water
distribution system and thus is more easily implemented in pre-existing wastewater treatment facilities with serpentine flow
paths, such as fixed-bed reactors, with minimal infrastructure changes. 相似文献
3.
Simultaneous electricity generation and selenium removal was evaluated in single-chamber microbial fuel cells (MFCs) with
acetate and glucose as carbon sources. Power output was not affected by selenite up to 125 mg l−1 with glucose as substrate. Coulombic efficiencies of MFCs with glucose increased from 25% to 38% at 150 mg Se l−1. About 99% of 50 and 200 mg Se l−1 selenite was removed in 48 and 72 h for MFCs fed with acetate and glucose, respectively, demonstrating the potential of using
MFC technology for Se remediation. 相似文献
4.
Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell 总被引:1,自引:0,他引:1
Shimoyama T Komukai S Yamazawa A Ueno Y Logan BE Watanabe K 《Applied microbiology and biotechnology》2008,80(2):325-330
A new highly scalable microbial fuel cell (MFC) design, consisting of a series of cassette electrodes (CE), was examined for increasing power production from organic matter in wastewater. Each CE chamber was composed of a box-shaped flat cathode (two air cathodes on both sides) sandwiched in between two proton-exchange membranes and two graphite-felt anodes. Due to the simple design of the CE-MFC, multiple cassettes can be combined to form a single unit and inserted into a tank to treat wastewater. A 12-chamber CE-MFC was tested using a synthetic wastewater containing starch, peptone, and fish extract. Stable performance was obtained after 15 days of operation in fed-batch mode, with an organic removal efficiency of 95% at an organic loading rate of 2.9 kg chemical oxygen demand (COD) per cubic meter per day and an efficiency of 93% at 5.8 kg COD per cubic meter per day. Power production was stable during this period, reaching maximum power densities of 129 W m(-3) (anode volume) and 899 mW m(-2) (anode projected area). The internal resistance of CE-MFC decreased from 2.9 (day 4) to 0.64 Omega (day 25). These results demonstrate the usefulness of the CE-MFC design for energy production and organic wastewater treatment. 相似文献
5.
Sunil A. Patil Venkata Prasad Surakasi Sandeep Koul Shrikant Ijmulwar Amar Vivek Y.S. Shouche B.P. Kapadnis 《Bioresource technology》2009,100(21):5132-5139
Feasibility of using chocolate industry wastewater as a substrate for electricity generation using activated sludge as a source of microorganisms was investigated in two-chambered microbial fuel cell. The maximum current generated with membrane and salt bridge MFCs was 3.02 and 2.3 A/m2, respectively, at 100 Ω external resistance, whereas the maximum current generated in glucose powered MFC was 3.1 A/m2. The use of chocolate industry wastewater in cathode chamber was promising with 4.1 mA current output. Significant reduction in COD, BOD, total solids and total dissolved solids of wastewater by 75%, 65%, 68%, 50%, respectively, indicated effective wastewater treatment in batch experiments. The 16S rDNA analysis of anode biofilm and suspended cells revealed predominance of β-Proteobacteria clones with 50.6% followed by unclassified bacteria (9.9%), α-Proteobacteria (9.1%), other Proteobacteria (9%), Planctomycetes (5.8%), Firmicutes (4.9%), Nitrospora (3.3%), Spirochaetes (3.3%), Bacteroides (2.4%) and γ-Proteobacteria (0.8%). Diverse bacterial groups represented as members of the anode chamber community. 相似文献
6.
Bioelectricity generation enhancement in a dual chamber microbial fuel cell under cathodic enzyme catalyzed dye decolorization 总被引:1,自引:0,他引:1
Enzymatic decolorization of reactive blue 221 (RB221) using laccase was investigated in a dual-chamber microbial fuel cell (MFC). Suspended laccase was used in the cathode chamber in the absence of any mediators in order to decolorize RB221 and also improve oxygen reduction reaction in the cathode. Molasses was utilized as low cost and high strength energy source in the anode chamber. The capability of MFC for simultaneous molasses and dye removal was investigated. A decolorization efficiency of 87% was achieved in the cathode chamber and 84% COD removal for molasses was observed in the anode chamber. Laccase could catalyze the removal of RB221 and had positive effect on MFC performance as well. Maximum power density increased about 30% when enzymatic decolorization was performed in the cathode chamber. 相似文献
7.
A microbiological process was established to harvest electricity from the carbon monoxide (CO). A CO fermenter was enriched with CO as the sole carbon source. The DGGE/DNA sequencing results showed that Acetobacterium spp. were enriched from the anaerobic digester fluid. After the fermenter was operated under continuous mode, the products were then continuously fed to the microbial fuel cell (MFC) to generate electricity. Even though the conversion yield was quite low, this study proved that synthesis gas (syn-gas) can be converted to electricity with the aid of microbes that do not possess the drawbacks of metal catalysts of conventional methods. 相似文献
8.
Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater 总被引:1,自引:0,他引:1
Electricity production and modeling of microbial fuel cell (MFC) from continuous beer brewery wastewater was studied in this paper. A single air-cathode MFC was constructed, carbon fiber was used as anode and diluted brewery wastewater (COD = 626.58 mg/L) as substrate. The MFC displayed an open-circuit voltage of 0.578 V and a maximum power density of 9.52 W/m3 (264 mW/m2). Using the model based on polarization curve, various voltage losses were quantified. At current density of 1.79 A/m2, reaction kinetic loss and mass transport loss both achieved to 0.248 V; while ohmic loss was 0.046 V. Results demonstrated that it was feasible and stable for producing bioelectricity from brewery wastewater; while the most important factors which influenced the performance of the MFC are reaction kinetic loss and mass transport loss. 相似文献
9.
Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell 总被引:3,自引:0,他引:3
Increased interest in sustainable agriculture and bio-based industries requires that we find more energy-efficient methods for treating cellulose-containing wastewaters. We examined the effectiveness of simultaneous electricity production and treatment of a paper recycling plant wastewater using microbial fuel cells. Treatment efficiency was limited by wastewater conductivity. When a 50 mM phosphate buffer solution (PBS, 5.9 mS/cm) was added to the wastewater, power densities reached 501 +/- 20 mW/m(2), with a coulombic efficiency of 16 +/- 2%. There was efficient removal of soluble organic matter, with 73 +/- 1% removed based on soluble chemical oxygen demand (SCOD) and only slightly greater total removal (76 +/- 4%) based on total COD (TCOD) over a 500-h batch cycle. Cellulose was nearly completely removed (96 +/- 1%) during treatment. Further increasing the conductivity (100 mM PBS) increased power to 672 +/- 27 mW/m(2). In contrast, only 144 +/- 7 mW/m(2) was produced using an unamended wastewater (0.8 mS/cm) with TCOD, SCOD, and cellulose removals of 29 +/- 1%, 51 +/- 2%, and 16 +/- 1% (350-h batch cycle). These results demonstrate limitations to treatment efficiencies with actual wastewaters caused by solution conductivity compared to laboratory experiments under more optimal conditions. 相似文献
10.
Treatment of wastewater from Dioscorea zingiberensis tubers used for producing steroid hormones in a microbial fuel cell 总被引:1,自引:0,他引:1
A two-chamber microbial fuel cell (MFC) was used to treat Dioscorea zingiberensis processing wastewater and generate electricity. The contaminant degradation process was systematically investigated with the help of UV-Vis, FTIR spectra and GC-MS. The results showed that the COD removal efficiency of the MFC reached 93.5% and the maximum power density achieved 175 mW/m2. In the anodic chamber, low molecule weight acid, sugars and cellulose in D. zingiberensis processing wastewater were completely consumed, while complicated contaminants including some furanic and phenolic compounds were decomposed under co-metabolism process. In the cathodic chamber, fatty ester and alkene generated in the anodic chamber were removed, and aromatic compounds were further degraded. Aromatic ester and N-containing compounds were detected as the main residual contaminants by GC-MS. Compared to the effluents of anaerobic digestion and biological aerated filter, fewer and simpler aromatic pollutants existed in the effluents of MFC. 相似文献
11.
Microbial fuel cell (MFC) is an emerging technology in the energy and environment field. Its application is limited due to its high cost caused by the utilization of membranes and noble metal catalysts. In this paper, a membraneless MFC, with separated electrode chambers, was designed. The two separated chambers are connected via a channel and the continuous electrolyte flow from anode to cathode drives proton transfer. The proton mass transfer coefficiency in this MFC is 0.9086 cm/s, which is higher than reported MFCs with membranes, such as J-cloth and glass fiber. The maximum output voltage is 160.7 mV, with 1000 Ω resistor. Its peak power density is 24.33 mW/m3. SCOD removal efficiency can reach 90.45% via this MFC. If the connection between the two electrode chambers is blocked, the performance of MFC will decrease severely. All the above results prove the feasibility and advantages of this special MFC model. 相似文献
12.
Impacts of process parameters optimization on the performance of the annular single chamber microbial fuel cell in wastewater treatment 下载免费PDF全文
Energy harvest from optimized annular single chamber microbial fuel cell (ASCMFC) with novel configuration, which treats chocolate industry wastewater, was investigated. In this study, optimization of operational parameters of the ASCMFC in terms of efficiency water‐soluble organic matter reduction and capability of electricity generation was evaluated. During the experiment, effluent from the anode compartment was examined through current and power density curves for variation in temperature and pH, chemical oxygen demand (COD), and turbidity removal, and substrate concentration. The performance analyzed at different temperature ranges such as 25, 30, 35, and 40°C, which showed 88% increase by uprising temperature from 25 to 35°C. The ASCMFC was used to produce electricity by adjusting pH between 5 and 9 at resistance of 100 Ω. Under the condition of pH 7 power density (16.75 W/m3) was highest, which means natural pH is preferred to maximize microbial activities. Wastewater concentration with COD of 700 and 1400 mg/L were investigated to determine its affection on current production. Reduction of current density was observed due to decrease in wastewater concentration. Significant reduction in COD and turbidity of effluent were 91 and 78%, respectively. The coulombic efficiency of 45.1% was achieved. 相似文献
13.
The present study evaluates the performance of air-cathode microbial fuel cells (MFCs) under alternating open circuit/closed circuit (OC/CC) modes and its effect on independent-electrode and full-cell potentials, power output (at different external resistances) and the polarization behaviour of the electrodes. Three different types of feeds were evaluated using this approach: (1) phosphorus buffer solution (PBS) with acetate as carbon source, (2) glucose-rich synthetic wastewater, and (3) sewage from wastewater treatment plant enriched with fermented molasses. When MFCs were suddenly switched to CC from OC and then again back to OC from CC, the behaviour of the anodes vs reference electrode (Ag/AgCl, 3 M KCl) was monitored. When electric circuit of the MFCs was switched from open to closed circuit, for all cases: (a) the anode potential-shift (vs Ag/AgCl) reallocated in the positive direction in about 200–400 mV, (b) the air-cathode potential-shift (vs Ag/AgCl) reallocated in the negative direction in about 10–25 mV, and (c) the cell-potential difference started at around 0 mV and progressively increased as the MFC reached stability. This behaviour was consistently reproduced during different OC/CC cycles. The systems studied delivered good performance with both controlled media and industrial wastewater. Additionally, this study provides insightful characterization of the independent-electrode behaviours. 相似文献
14.
Kuntke P Geleji M Bruning H Zeeman G Hamelers HV Buisman CJ 《Bioresource technology》2011,102(6):4376-4382
Ammonium recovery using a two chamber microbial fuel cell (MFC) was investigated at high ammonium concentration. Increasing the ammonium concentration (from 0.07 to 4 g ammonium-nitrogen/L) by addition of ammonium chloride did not affect the performance of the MFC. The obtained current densities by DC-voltammetry were higher than 6 A/m2 for both operated MFCs. Also continuous operation at lower external resistance (250 Ω) showed an increased current density (0.9 A/m2). Effective ammonium recovery can be achieved by migrational ion flux through the cation exchange membrane to the cathode chamber, driven by the electron production from degradation of organic substrate. The charge transport was proportional to the concentration of ions. Nonetheless, a concentration gradient will influence the charge transport. Furthermore, a charge exchange process can influence the charge transport and therefore the recovery of specific ions. 相似文献
15.
J.H. Ryu H.L. Lee Y.P. Lee T.S. Kim M.K. Kim D.T.N. Anh H.T. Tran D.H. Ahn 《Process Biochemistry》2013,48(7):1080-1085
Simultaneous carbon and nitrogen removal using loop configuration microbial fuel cell (MFC) with relatively large size of 5 L was investigated in this study. Four MFC reactors were constructed with a loop configuration to eliminate the pH gradient, and the reactor performance was examined with different separators and cathode materials. The performance of the reactors in terms of electricity generation and contaminant removal rate was examined. Results showed that a maximum power density of 1415.6 mW/m3 (The empty bed volume of anode chamber) was obtained at a current density of 3258.5 mA/m3 with cation exchange membrane as separator and graphite felt (Pt coated) as cathode using the piggery wastewater as feed, and the organic removal rate obtained was approximately 0.523 kg COD/m3/d (total anode chamber) with nitrogen removal rate of 0.194 kg N/m3/d (total cathode chamber). 相似文献
16.
Responses from freshwater sediment during electricity generation using microbial fuel cells 总被引:1,自引:0,他引:1
In a two-electrode system, freshwater sediment was used as a fuel to examine the relationship between current generation and
organic matter consumption with different types of electrode. Sediment microbial fuel cells using porous electrodes showed
a superior performance in terms of generating current when compared with the use of non-porous electrodes. The maximum current
densities with thicker and thin porous electrodes were 45.4 and 37.6 mA m−2, respectively, whereas the value with non-porous electrodes was 13.9 mA m−2. The amount of organic matter removed correlated with the current produced. The redox potential in the anode area under closed-circuit
conditions was +246.3 ± 67.7 mV, while that under open-circuit conditions only reached −143.0 ± 7.18 mV. This suggests that
an application of this system in organic-rich sediment could provide environmental benefits such as decreasing organic matter
and prohibiting methane emission in conjunction with electricity production via an anaerobic oxidation process. 相似文献
17.
Xiaoyuan ZhangShaoan Cheng Peng LiangXia Huang Bruce E. Logan 《Bioresource technology》2011,102(1):372-375
The combined use of brush anodes and glass fiber (GF1) separators, and plastic mesh supporters were used here for the first time to create a scalable microbial fuel cell architecture. Separators prevented short circuiting of closely-spaced electrodes, and cathode supporters were used to avoid water gaps between the separator and cathode that can reduce power production. The maximum power density with a separator and supporter and a single cathode was 75 ± 1 W/m3. Removing the separator decreased power by 8%. Adding a second cathode increased power to 154 ± 1 W/m3. Current was increased by connecting two MFCs connected in parallel. These results show that brush anodes, combined with a glass fiber separator and a plastic mesh supporter, produce a useful MFC architecture that is inherently scalable due to good insulation between the electrodes and a compact architecture. 相似文献
18.
Electricity production in membrane-less microbial fuel cell fed with livestock organic solid waste 总被引:1,自引:0,他引:1
Two different MFC configurations designed for handling solid wastes as a feedstock were evaluated in batch mode: a single compartment combined membrane-electrodes (SCME) design; and a twin-compartment brush-type anode electrodes (TBE) design (reversed T-shape MFC with two-air cathode) without a proton exchange membrane (PEM). Cattle manure was tested as a model livestock organic solid waste feedstock. Under steady conditions, voltage of 0.38 V was recorded with an external resistance of 470 Ω. When digested anaerobic sludge was used as the seed in the SCME design, a maximum power density of 36.6 mW/m2 was recorded. When hydrogen-generating bacteria (HGB) were used as the seed used in the TBE design, a higher power density of 67 mW/m2 was recorded. 相似文献
19.
Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance 总被引:1,自引:0,他引:1
The performance of a microbial fuel cell (MFC) was investigated at different temperatures and anodic media. A lag phase of 30 h occurred at 30 degrees C which was half that at room temperature (22 degrees C). The maximum power density at 30 degrees C was 70 mW/m(2) and at 22 degrees C was 43 mW/m(2). At 15 degrees C, no successful operation was observed even after several loadings for a long period of operation. Maximum power density of 320 mW/m(2) was obtained with wastewater medium containing phosphate buffer (conductivity: 11.8 mS/cm), which was approx. 4 times higher than the value without phosphate additions (2.89 mS/cm). 相似文献
20.
Electricity generation in a microbial fuel cell with a microbially catalyzed cathode 总被引:1,自引:0,他引:1
A microbial fuel cell using aerobic microorganisms as the cathodic catalysts is described. By using anaerobic sludge in the anode and aerobic sludge in the cathode as inocula, the microbial fuel cell could be started up after a short lag time of 9 days, generating a stable voltage of 0.324 V (R (ex) = 500 Omega). At an aeration rate of 300 ml min(-1) in the cathode, a maximum volumetric power density of up to 24.7 W m(-3) (117.2 A m(-3)) was reached. This research demonstrates an economic system for recovering electrical energy from organic compounds. 相似文献