共查询到20条相似文献,搜索用时 15 毫秒
1.
《Enzyme and microbial technology》2013,53(5):339-344
In this study, a bacterial strain, Lysinibacillus sphaericus which is relatively new in the vast list of biocatalysts known to produce electricity has been tested for its potential in power production. It is cited from the literature that the organism is deficient in some sugar or polysaccharide processing enzymes and thus is tested for its ability to utilize substrates mainly rich in protein components like beef extract and with successive production of electricity. The particular species has been found to generate a maximum power density of 85 mW/m2 and current density of ≈270 mA/m2 using graphite felt as electrode. The maximum Open Circuit Voltage and current has been noted as 0.7 Vand 0.8 mA during these operational cycles. Cyclic voltammetry studies indicate the presence of some electroactive compounds which can facilitate electron transfer from bacteria to electrode. The number of electrogens able to generate electricity in mediator free conditions are few, and the study introduces more divergence to that population. Substrate specificity and electricity generation efficacy of the strain in treating wastewater, specially rich in protein content has been reported in the study. As the species has been found to be efficient in utilizing proteinaceous material, the technique can be useful to treat specific type of wastewaters like wastewater from slaughterhouses or from meat packaging industry. Treating them in a more economical way which generates electricity as a outcome must be preferred over the conventional aerobic treatments. Emphasizing on substrate specificity, the study introduces this novel Lysinibacillus strain as a potent biocatalyst and its sustainable role in MFC application for bioenergy generation. 相似文献
2.
The biofilm of a microbial fuel cell (MFC) experiences biofilm-related (growth and mass transport) and electrochemical (electron conduction and charger-transfer) processes. We developed a dynamic, one-dimensional, multi-species model for the biofilm in three steps. First, we formulated the biofilm on the anode as a "biofilm anode" with the following two properties: (1) The biofilm has a conductive solid matrix characterized by the biofilm conductivity (kappa(bio)). (2) The biofilm matrix accepts electrons from biofilm bacteria and conducts the electrons to the anode. Second, we derived the Nernst-Monod expression to describe the rate of electron-donor (ED) oxidation. Third, we linked these components using the principles of mass balance and Ohm's law. We then solved the model to study dual limitation in biofilm by the ED concentration and local potential. Our model illustrates that kappa(bio) strongly influences the ED and current fluxes, the type of limitation in biofilm, and the biomass distribution. A larger kappa(bio) increases the ED and current fluxes, and, consequently, the ED mass-transfer resistance becomes significant. A significant gradient in ED concentration, local potential, or both can develop in the biofilm anode, and the biomass actively respires only where ED concentration and local potential are high. When kappa(bio) is relatively large (i.e., > or =10(-3) mS cm(-1)), active biomass can persist up to tens of micrometers away from the anode. Increases in biofilm thickness and accumulation of inert biomass accentuate dual limitation and reduce the current density. These limitations can be alleviated with increases in the specific detachment rate and biofilm density. 相似文献
3.
A thermophilic anaerobic digester (AD) was combined with a microbial fuel cell (MFC) to evaluate whether either component had increased stability when operated in combination as a hybrid system, perturbed by the addition of acetic acid. The MFC and the anaerobic digester were able to operate effectively together. The MFC was more susceptible to high acetic acid load than the AD. The hybrid system did not have increased resilience compared to the solitary systems in the conditions tested. However, the low pH had a relatively delayed effect on the MFC compared to the AD, allowing the hybrid system to have a more stable energy output. Also, at very low pH, when operating as a hybrid, the AD component was able to recover pH to normal levels when the MFC component failed. These results demonstrate that there are synergies that can be gained from this hybrid system. 相似文献
4.
A wall-jet microbial fuel cell (MFC) was developed for the monitoring of anaerobic digestion (AD). This biofilm based MFC biosensor had a character of being portable, short hydraulic retention time (HRT) for sample flow through and convenient for continuous operation. The MFC was installed in the recirculation loop of an upflow anaerobic fixed-bed (UAFB) reactor in bench-scale where pH of the fermentation broth and biogas flow were monitored in real time. External disturbances to the AD were added on purpose by changing feedstock concentration, as well as process configuration. MFC signals had good correlations with online measurements (i.e. pH, gas flow rate) and offline analysis (i.e. COD) over 6-month operation. These results suggest that the MFC signal can reflect the dynamic variation of AD and can potentially be a valuable tool for monitoring and control of bioprocess. 相似文献
5.
Saito T Mehanna M Wang X Cusick RD Feng Y Hickner MA Logan BE 《Bioresource technology》2011,102(1):395-398
Carbon cloth anodes were modified with 4(N,N-dimethylamino)benzene diazonium tetrafluoroborate to increase nitrogen-containing functional groups at the anode surface in order to test whether the performance of microbial fuel cells (MFCs) could be improved by controllably modifying the anode surface chemistry. Anodes with the lowest extent of functionalization, based on a nitrogen/carbon ratio of 0.7 as measured by XPS, achieved the highest power density of 938 mW/m2. This power density was 24% greater than an untreated anode, and similar to that obtained with an ammonia gas treatment previously shown to increase power. Increasing the nitrogen/carbon ratio to 3.8, however, decreased the power density to 707 mW/m2. These results demonstrate that a small amount of nitrogen functionalization on the carbon cloth material is sufficient to enhance MFC performance, likely as a result of promoting bacterial adhesion to the surface without adversely affecting microbial viability or electron transfer to the surface. 相似文献
6.
A mediator-less three-stage two-chamber microbial fuel cell (MFC) system was developed and operated continuously for more
than 1.5 years to evaluate continuous power generation while treating artificial wastewater containing glucose (10 mM) concurrently.
A stable power density of 28 W/m3 was attained with an anode hydraulic retention time of 4.5 h and phosphate buffer as the cathode electrolyte. An overall
dissolved organic carbon removal ratio was about 85%, and coulombic efficiency was about 46% in this MFC system. We also analyzed
the microbial community structure of anode biofilms in each MFC. Since the environment in each MFC was different due to passing
on the products to the next MFC in series, the microbial community structure was different accordingly. The anode biofilm
in the first MFC consisted mainly of bacteria belonging to the Gammaproteobacteria, identified as Aeromonas sp., while the Firmicutes dominated the anode biofilms in the second and third MFCs that were mainly fed with acetate. Cyclic
voltammetric results supported the presence of a redox compound(s) associated with the anode biofilm matrix, rather than mobile
(dissolved) forms, which could be responsible for the electron transfer to the anode. Scanning electron microscopy revealed
that the anode biofilms were comprised of morphologically different cells that were firmly attached on the anode surface and
interconnected each other with anchor-like filamentous appendages, which might support the results of cyclic voltammetry.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
7.
8.
Justin C. Biffinger Ricky Ray Brenda J. Little Lisa A. Fitzgerald Meghann Ribbens Steven E. Finkel Bradley R. Ringeisen 《Biotechnology and bioengineering》2009,103(3):524-531
Changes in metabolism and cellular physiology of facultative anaerobes during oxygen exposure can be substantial, but little is known about how these changes connect with electrical current output from an operating microbial fuel cell (MFC). A high‐throughput voltage based screening assay (VBSA) was used to correlate current output from a MFC containing Shewanella oneidensis MR‐1 to carbon source (glucose or lactate) utilization, culture conditions, and biofilm coverage over 250 h. Lactate induced an immediate current response from S. oneidensis MR‐1, with both air‐exposed and anaerobic anodes throughout the duration of the experiments. Glucose was initially utilized for current output by MR‐1 when cultured and maintained in the presence of air. However, after repeated additions of glucose, the current output from the MFC decreased substantially while viable planktonic cell counts and biofilm coverage remained constant suggesting that extracellular electron transfer pathways were being inhibited. Shewanella maintained under an anaerobic atmosphere did not utilize glucose consistent with literature precedents. Operation of the VBSA permitted data collection from nine simultaneous S. oneidensis MR‐1 MFC experiments in which each experiment was able to demonstrate organic carbon source utilization and oxygen dependent biofilm formation on a carbon electrode. These data provide the first direct evidence of complex cellular responses to electron donor and oxygen tension by Shewanella in an operating MFC at select time points. Biotechnol. Bioeng. 2009;103: 524–531. Published 2009 Wiley Periodicals, Inc. 相似文献
9.
A series of fiber electrodes with fiber diameters ranging from about 10 to 0.1 μm were tested as anodes in microbial fuel cells to study the effect of fiber diameter on the behavior of biofilm and anodic performance of fiber electrodes. A simple method of biofilm fixation and dehydration was developed for biofilm morphology characterization. Results showed that the current density of fiber anodes increased until the fiber diameter approached 1 μm which was about the length of the dominant microorganisms in biofilm. The highest current density was 3.08 mA cm(-2), which was obtained from fiber anode with high porosity of over 99% and fiber diameter of 0.87 μm. It was believed that the high current density was attributed to the high porosity, as well as proper fiber diameter which ensured formation of thick and continuous solid biofilms. 相似文献
10.
11.
Kuntke P Geleji M Bruning H Zeeman G Hamelers HV Buisman CJ 《Bioresource technology》2011,102(6):4376-4382
Ammonium recovery using a two chamber microbial fuel cell (MFC) was investigated at high ammonium concentration. Increasing the ammonium concentration (from 0.07 to 4 g ammonium-nitrogen/L) by addition of ammonium chloride did not affect the performance of the MFC. The obtained current densities by DC-voltammetry were higher than 6 A/m2 for both operated MFCs. Also continuous operation at lower external resistance (250 Ω) showed an increased current density (0.9 A/m2). Effective ammonium recovery can be achieved by migrational ion flux through the cation exchange membrane to the cathode chamber, driven by the electron production from degradation of organic substrate. The charge transport was proportional to the concentration of ions. Nonetheless, a concentration gradient will influence the charge transport. Furthermore, a charge exchange process can influence the charge transport and therefore the recovery of specific ions. 相似文献
12.
The performance of a prototype up‐flow single‐chambered microbial fuel cell (MFC) for electrical power generation using brewery wastewater as fuel is reported. The designed reactor consisted of three zones, namely a lower anaerobic digestion zone, a central MFC zone, and an upper effluent clarifier zone. Tests were conducted in batch mode using a beer wastewater as the fuel/electron donor (COD concentration: 430 mg/L) and mixed consortia (both sewage microflora and anaerobic sludge) as a source of electrogenic bacteria. A stable current density of ~2,270 mA/m2 was generated under continuous polarization with a constant external resistance (0.01 kΩ) and cell polarization gave a peak power density of 330 mW/m2 at a current density of 1,680 mA/m2. Electrochemical impedance analysis showed that the overall internal resistance of the reactor was quite low, that is, 8.0 Ω. Cyclic voltammetric analysis of the anodic biofilm at low scan rate revealed quite complex processes at the anode, with three redox peaks, at potentials of 116, 214, and 319 mV (vs. NHE). Biotechnol. Bioeng. 2010;107: 52–58. © 2010 Wiley Periodicals, Inc. 相似文献
13.
《Process Biochemistry》2014,49(6):973-980
The pseudo-capacitive behaviour of a high surface area carbon veil electrode in a tubular microbial fuel cell (MFC) was investigated as a mechanism to enhance power quality and energy efficiency. Accumulated charge and energy from the anodic biofilm after prolonged open circuit times (1–120 min) were compared against equivalent periods of steady state loading (R = 100–3000 Ω). A significant difference in the amount of accumulated charge with different loads was observed, resulting in 1.051 C (R = 100 Ω) compared to 0.006 C (R = 3 kΩ). The automated application of short open and closed circuit (0.5–10 s) cycles resulted in an increase of power/current production (closed circuit alone), but presented lower efficiency considering entire open and closed period. The cumulative charge on the carbon veil electrode with biofilm was 39,807 C m−2 at 100 Ω. Electrochemical Impedance Spectroscopy (EIS) showed that the Helmholtz layer presented a double layer capacitance of more than ten times the biofilm on electrode. The results indicate that the capacitive behaviour could be utilized to increase the power quality, i.e. its availability/applicability with respect to the operation of low power consuming devices. 相似文献
14.
Debora F. Rodrigues 《Biofouling》2013,29(5):401-411
The influence of type 1 fimbriae, mannose-sensitive structures, on biofilm development and maturation has been examined by the use of three isogenic Escherichia coli K12 strains: wild type, fimbriated, and non-fimbriated. Experiments with the three strains were done in minimal medium or Luria–Bertani broth supplemented with different concentrations of d-mannose. The investigation consisted of: (1) characterizing the bacterial surface of the three strains with respect to hydrophilicity and surface charge, (2) investigating the effect of type 1 fimbriae on bacterial adhesion rate and reversibility of initial adhesion on glass surfaces, and (3) verifying the role of type 1 fimbriae and exopolysaccharides (EPS) in biofilm maturation. The results suggest that type 1 fimbriae are not required for the initial bacterial adhesion on glass surfaces as the non-fimbriated cells had higher adhesion rates and irreversible deposition. Type 1 fimbriae, however, are critical for subsequent biofilm development. It was hypothesized that in the biofilm maturation step, the cells synthesize mannose-rich EPS, which functions as a ‘conditioning film’ that can be recognized by the type 1 fimbriae. 相似文献
15.
A sensor, based on a submersible microbial fuel cell (SUMFC), was developed for in situ monitoring of microbial activity and biochemical oxygen demand (BOD) in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Fresh anode was required for application of the sensor for microbial activity measurement, while biofilm‐colonized anode was needed for utilizing the sensor for BOD content measurement. The current density of SUMFC sensor equipped with a biofilm‐colonized anode showed linear relationship with BOD content, to up to 250 mg/L (~233 ± 1 mA/m2), with a response time of <0.67 h. This sensor could, however, not measure microbial activity, as indicated by the indifferent current produced at varying active microorganisms concentration, which was expressed as microbial adenosine‐triphosphate (ATP) concentration. On the contrary, the current density (0.6 ± 0.1 to 12.4 ± 0.1 mA/m2) of the SUMFC sensor equipped with a fresh anode showed linear relationship, with active microorganism concentrations from 0 to 6.52 nmol‐ATP/L, while no correlation between the current and BOD was observed. It was found that temperature, pH, conductivity, and inorganic solid content were significantly affecting the sensitivity of the sensor. Lastly, the sensor was tested with real contaminated groundwater, where the microbial activity and BOD content could be detected in <3.1 h. The microbial activity and BOD concentration measured by SUMFC sensor fitted well with the one measured by the standard methods, with deviations ranging from 15% to 22% and 6% to 16%, respectively. The SUMFC sensor provides a new way for in situ and quantitative monitoring contaminants content and biological activity during bioremediation process in variety of anoxic aquifers. Biotechnol. Bioeng. 2011;108: 2339–2347. © 2011 Wiley Periodicals, Inc. 相似文献
16.
Goal, Scope and Background Assessing future energy and transport systems is of major importance for providing timely information for decision makers.
In the discussion of technology options, fuel cells are often portrayed as attractive options for power plants and automotive
applications. However, when analysing these systems, the LCA analyst is confronted with methodological problems, particularly
with data gaps and the requirement of forecasting and anticipation of future developments. This series of two papers aims
at providing a methodological framework for assessing future energy and transport systems (Part 1) and applies this to the
two major application areas of fuel cells (Part 2).
Methods To allow the LCA of future energy and transport systems, forecasting tools like, amongst others, cost estimation methods and
process simulation of systems are investigated with respect to the applicability in LCAs of future systems (Part 1). The manufacturing
process of an SOFC stack is used as an illustration for the forecasting procedure. In Part 2, detailed LCAs of fuel cell power
plants and power trains are carried out including fuel (hydrogen, methanol, gasoline, diesel and natural gas) and energy converter
production. To compare it with competing technologies, internal combustion engines (automotive applications) and reciprocating
engines, gas turbines and combined cycle plants (stationary applications) are also analysed.
Results and Discussion Principally, the investigated forecasting methods are suitable for future energy system assessment. The selection of the best
method depends on different factors such as required ressources, quality of the results and flexibility. In particular, the
time horizon of the investigation determines which forecasting tool may be applied. Environmentally relevant process steps
exhibiting a significant time dependency shall always be investigated using different independent forecasting tools to ensure
stability of the results.
The results of the LCA underline that, in general, fuel cells offer advantages in the impact categories usually dominated
by pol-lutant emissions, such as acidification and eutrophication, whereas for global warming and primary energy demand, the
situation depends on a set of parameters such as driving cycle and fuel economy ratio in mobile applications and thermal/total
efficiencies in stationary applications. For the latter impact categories, the choice of the primary energy carrier for fuel
production (renewable or fossil) dominates the impact reduction. With increasing efficiency and improving emission performance
of the conventional systems, the competition in both mobile and stationary applications is getting even stronger. The production
of the fuel cell system is of low overall significance in stationary applications, whereas in vehicles, the lower life-time
of the vehicle leads to a much higher significance of the power train production.
Recommendations and Perspectives In future, rapid technological and energy economic development will bring further advances for both fuel cells and conventional
energy converters. Therefore, LCAs at such an early stage of the market development can only be considered preliminary. It
is an essential requirement to accompany the ongoing research and development with iterative LCAs, constantly pointing at
environmental hot spots and bottlenecks. 相似文献
17.
18.
Pentachlorophenol (PCP) was more rapidly degraded in acetate and glucose-fed microbial fuel cells (MFCs) than in open circuit controls, with removal rates of 0.12 ± 0.01 mg/Lh (14.8 ± 1.0 mg/g-VSS-h) in acetate-fed, and 0.08 ± 0.01 mg/L h (6.9 ± 0.8 mg/g-VSS-h) in glucose-fed MFCs, at an initial PCP concentration of 15 mg/L. A PCP of 15 mg/L had no effect on power generation from acetate but power production was decreased with glucose. Coulombic balances indicate the predominant product was electricity (16.1 ± 0.3%) in PCP-acetate MFCs, and lactate (19.8 ± 3.3%) in PCP-glucose MFCs. Current generation accelerated the removal of PCP and co-substrates, as well as the degradation products in both PCP-acetate and PCP-glucose reactors. While 2,3,4,5-tetrachlorophenol was present in both reactors, tetrachlorohydroquinone was only found in PCP-acetate MFCs. These results demonstrate PCP degradation and power production were affected by current generation and the type of electron donor provided. 相似文献
19.
Recirculation of the leachate in the acidogenic reactor was proposed to enhance anaerobic digestion of food waste in the hybrid anaerobic solid–liquid (HASL) system. Recirculation of the leachate in the acidogenic reactor provided better conditions for extraction of organic matter from the treated food waste and buffering capacity to prevent excessive acidification in the acidogenic reactor. It ensured faster supply of nutrients in the methanogenic reactor in experiment. The highest dissolved COD and VFA concentrations in the leachate from the acidogenic reactor were reached for shorter time and were 16,670 mg/l and 9450 mg/l in control and 18,614 mg/l and 11,094 mg/l in experiment, respectively. Recycling of the leachate in the acidogenic reactor intensified anaerobic digestion of food waste and diminished time needed to produce the same quantity of methane by 40% in comparison with anaerobic digestion of food waste without recirculation. 相似文献
20.
A model of a minimal cell would be a valuable tool in identifying the organizing principles that relate the static sequence information of the genome to the dynamic functioning of the living cell. Our approach for developing a minimal cell model is to first generalize an existing model of Escherichia coli by expressing reaction rates as ratios to a set of reference parameters. This generalized model is a prototype minimal cell model that will be developed by adding detail to explicitly include each chemical species. We tested the concept of a generalized model by testing the effect of scaling all enzyme-catalyzed reactions in the E. coli model. The scaling has little effect on cellular function for a wide range of kinetic ratios, where the kinetic ratio is defined as the rate of all enzyme-catalyzed reactions in a given model relative to those in the E. coli model. 相似文献