首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibitor-2 (I-2) is a regulator of protein phosphatase type-1 (PP1), known to be phosphorylated in vitro by multiple kinases. In particular Thr72 is a Thr-Pro phosphorylation site conserved from yeast to human, but there is no evidence that this phosphorylation responds to any physiological signals. Here, we used electrophoretic mobility shift and immunoblotting with a site-specific phospho-Thr72 antibody to establish Thr72 phosphorylation in HeLa cells and show a 25-fold increase in phosphorylation during mitosis. Mass spectrometry demonstrated I-2 in actively growing HeLa cells was also phosphorylated at three other sites, Ser120, Ser121, and an additional Ser located between residues 70 and 90. In vitro kinase assays using recombinant I-2 as a substrate showed that the Thr72 kinase(s) was activated during mitosis, and sensitivity to kinase inhibitors indicated that the principal I-2 Thr72 kinase was not GSK3 but instead a member of the cyclin-dependent protein kinase family. Immunocytochemistry confirmed Thr72 phosphorylation of I-2 during mitosis, with peak intensity at prophase, and revealed subcellular concentration of the phospho-Thr72 I-2 at centrosomes. Together, the data show dynamic changes in I-2 phosphorylation during mitosis and localization of phosphorylated I-2 at centrosomes, suggesting involvement in mammalian cell division.  相似文献   

2.
Tau protein, a neuronal microtubule-associated protein, is phosphorylated in situ and hyperphosphorylated when aggregated into the paired helical filaments of Alzheimer's disease. To study the phosphorylation of tau protein in vivo, we have stably transfected htau40, the largest human tau isoform, into Chinese hamster ovary cells. The distribution and phosphorylation of tau was monitored by gel shift, autoradiography, immunofluorescence, and immunoblotting, using the antibodies Tau-1, AT8, AT180, and PHF-1, which are sensitive to the phosphorylation of Ser202, Thr205, Thr231, Ser235, Ser396, and Ser404 and are used in the diagnosis of Alzheimer tau. In interphase cells, tau becomes phosphorylated to some extent, partly at these sites; most of the tau is associated with microtubules. In mitosis, the above Ser/Thr-Pro sites become almost completely phosphorylated, causing a pronounced shift in M(r) and an antibody reactivity similar to that of Alzheimer tau. Moreover, a substantial fraction of tau is found in the cytoplasm detached from microtubules. Autoradiographs of metabolically labeled Chinese hamster ovary cells in interphase and mitosis confirmed that tau protein is more highly phosphorylated during mitosis. The understanding of tau phosphorylation under physiological conditions might help elucidate possible mechanisms for the hyperphosphorylation in Alzheimer's disease.  相似文献   

3.
4.
5.
The reversible phosphorylation of proteins on serine/threonine residues preceding proline (Ser/Thr-Pro) is a major regulatory mechanism for the control of a series of cell cycle events. Although phosphorylation is thought to regulate protein function by inducing conformational changes, little is known about most of these conformational changes and their significance. Recent studies indicate that the conformation and function of a subset of these phosphorylated proteins are controlled by the prolyl isomerase Pin1 through isomerization of specific phosphorylated Ser/Thr-Pro bonds. Furthermore, compelling evidence supports the idea that proline-directed phosphorylation and subsequent isomerization play a critical role not only in cell cycle control, but also in the development of Alzheimer's disease, where postmitotic neurons display various cell cycle markers, especially mitotic events, prior to degeneration.  相似文献   

6.
The actin-binding protein p57/coronin-1, a member of the coronin protein family, is selectively expressed in hematopoietic cells and plays crucial roles in the immune response through reorganization of the actin cytoskeleton. We previously reported that p57/coronin-1 is phosphorylated by protein kinase C, and the phosphorylation down-regulates the association of this protein with actin. In this study we analyzed the phosphorylation sites of p57/coronin-1 derived from HL60 human leukemic cells by MALDI-TOF-MS, two-dimensional gel electrophoresis, and Phos-tag® acrylamide gel electrophoresis in combination with site-directed mutagenesis and identified Ser-2 and Thr-412 as major phosphorylation sites. A major part of p57/coronin-1 was found as an unphosphorylated form in HL60 cells, but phosphorylation at Thr-412 of p57/coronin-1 was detected after the cells were treated with calyculin A, a Ser/Thr phosphatase inhibitor, suggesting that p57/coronin-1 undergoes constitutive turnover of phosphorylation/dephosphorylation at Thr-412. A diphosphorylated form of p57/coronin-1 was detected after the cells were treated with phorbol 12-myristate 13-acetate plus calyculin A. We then assessed the effects of phosphorylation at Thr-412 on the association of p57/coronin-1 with actin. A co-immunoprecipitation experiment with anti-p57/coronin-1 antibodies and HL60 cell lysates revealed that β-actin was co-precipitated with the unphosphorylated form but not with the phosphorylated form at Thr-412 of p57/coronin-1. Furthermore, the phosphorylation mimic (T412D) of p57/coronin-1 expressed in HEK293T cells exhibited lower affinity for actin than the wild-type or the unphosphorylation mimic (T412A) did. These results indicate that the constitutive turnover of phosphorylation at Thr-412 of p57/coronin-1 regulates its interaction with actin.  相似文献   

7.
Pinning down proline-directed phosphorylation signaling   总被引:13,自引:0,他引:13  
The reversible phosphorylation of proteins on serine or threonine residues preceding proline (Ser/Thr-Pro) is a major cellular signaling mechanism. Although it is proposed that phosphorylation regulates the function of proteins by inducing a conformational change, there are few clues about the actual conformational changes and their importance. Recent identification of the novel prolyl isomerase Pin1 that specifically isomerizes only the phosphorylated Ser/Thr-Pro bonds in certain proteins led us to propose a new signaling mechanism, whereby prolyl isomerization catalytically induces conformational changes in proteins following phosphorylation to regulate protein function. Emerging data indicate that such conformational changes have profound effects on catalytic activity, dephosphorylation, protein-protein interactions, subcellular location and/or turnover. Furthermore, this post-phosphorylation mechanism might play an important role in cell growth control and diseases such as cancer and Alzheimer's.  相似文献   

8.
Summary Ser/Thr-Pro motif is a widespread phosphorylated site in proteins, and its reversible phosphorylation is an important regulatory progress in many cell cycles and signal transduction. Recent research reveals that phosphorylation affects the local conformation of the peptide and its binding with the substrate through peptidyl--prolyl cis/trans isomerization. In order to further explore the effect of the phosphate group with different charges, four model peptides containing non- and phosphorylated Ser/Thr-Pro motif were synthesized using the classical solid-phase method. 1H-NMR, TOCSY, and ROESY were employed to characterize the conformation of the model peptides in solution with different pH value and analyze the peptidyl--prolyl isomerization at a molecular level. The results demonstrate that phosphorylation increases the cis conformation in the peptide and the maximum cis/trans ratio is obtained when the phosphate group has two negative charges. Furthermore, the experiments prove that the phosphorylation introduces a hydrogen bond between the phosphate and the NH of Ser/Thr residue, and the charges of the phosphate affect certain conformations of the phosphorylated Ser/Thr-Pro motif.  相似文献   

9.
In recent years there has been growing interest in the post-translational regulation of P-type ATPases by protein kinase-mediated phosphorylation. Pma1 H(+)-ATPase, which is responsible for H(+)-dependent nutrient uptake in yeast (Saccharomyces cerevisiae), is one such example, displaying a rapid 5-10-fold increase in activity when carbon-starved cells are exposed to glucose. Activation has been linked to Ser/Thr phosphorylation in the C-terminal tail of the ATPase, but the specific phosphorylation sites have not previously been mapped. The present study has used nanoflow high pressure liquid chromatography coupled with electrospray electron transfer dissociation tandem mass spectrometry to identify Ser-911 and Thr-912 as two major phosphorylation sites that are clearly related to glucose activation. In carbon-starved cells with low Pma1 activity, peptide 896-918, which was derived from the C terminus upon Lys-C proteolysis, was found to be singly phosphorylated at Thr-912, whereas in glucose-metabolizing cells with high ATPase activity, the same peptide was doubly phosphorylated at Ser-911 and Thr-912. Reciprocal (14)N/(15)N metabolic labeling of cells was used to measure the relative phosphorylation levels at the two sites. The addition of glucose to carbon-starved cells led to a 3-fold reduction in the singly phosphorylated form and an 11-fold increase in the doubly phosphorylated form. These results point to a mechanism in which the stepwise phosphorylation of two tandemly positioned residues near the C terminus mediates glucose-dependent activation of the H(+)-ATPase.  相似文献   

10.
11.
Pinning down cell signaling, cancer and Alzheimer's disease   总被引:17,自引:0,他引:17  
Protein phosphorylation on certain serine or threonine residues preceding proline (Ser/Thr-Pro) is a pivitol signaling mechanism in diverse cellular processes and its deregulation can lead to human disease. However, little is known about how these phosphorylation events actually control cell signaling. Pin1 is a highly conserved enzyme that isomerizes only the phosphorylated Ser/Thr-Pro bonds in certain proteins, thereby inducing conformational changes. Recent results indicate that such conformational changes following phosphorylation are a novel signaling mechanism pivotal in regulating many cellular functions. This mechanism also offers new insights into the pathogenesis and treatment of human disease, most notably cancer and Alzheimer's disease. Thus, Pin1 plays a key role in linking signal transduction to the pathogenesis of cancer and Alzheimer's disease - two major age-related diseases.  相似文献   

12.
The serine/threonine kinase RAF-1 is phosphorylated in intact macrophages in response to CSF-1 at 37 degrees C The augmented phosphorylation of RAF-1 and a concomitant increase in RAF-1 associated serine/threonine kinase activity are kinetically later events than CSF-1 induced protein tyrosine phosphorylation. Furthermore, phosphoamino acid analysis of RAF-1 reveals the presence of phosphoserine, trace amounts of phosphothreonine but no phosphotyrosine and the phosphorylated RAF-1 does not react with anti-phosphotyrosine antibodies. In contrast to CSF-1 induced protein tyrosine phosphorylation, RAF-1 phosphorylation and activation are temperature dependent and do not occur at 4 degrees C. Furthermore, coprecipitation experiments failed to reveal any noncovalent association of RAF-1 with the CSF-1 receptor. Thus, while RAF-1 is not a direct substrate for the CSF-1 receptor tyrosine kinase in vivo, its temperature dependent phosphorylation and activation represent an intriguing aspect of the CSF-1 response.  相似文献   

13.
The role and control of the four rapamycin-sensitive phosphorylation sites that govern the association of PHAS-I with the mRNA cap-binding protein, eukaryotic initiation factor 4E (eIF4E), were investigated by using newly developed phospho-specific antibodies. Thr(P)-36/45 antibodies reacted with all three forms of PHAS-I that were resolved when cell extracts were subjected to SDS-polyacrylamide gel electrophoresis. Thr(P)-69 antibodies bound the forms of intermediate and lowest mobility, and Ser(P)-64 antibodies reacted only with the lowest mobility form. A portion of PHAS-I that copurified with eIF4E reacted with Thr(P)-36/45 and Thr(P)-69 antibodies but not with Ser(P)-64 antibodies. Insulin and/or amino acids increased, and rapamycin decreased, the reactivity of all three antibodies with PHAS-I in both HEK293 cells and 3T3-L1 adipocytes. Immunoprecipitated epitope-tagged mammalian target of rapamycin (mTOR) phosphorylated Thr-36/45. mTOR also phosphorylated Thr-69 and Ser-64 but only when purified immune complexes were incubated with the activating antibody, mTAb1. Interestingly, the phosphorylation of Thr-69 and Ser-64 was much more sensitive to inhibition by rapamycin-FKBP12 than the phosphorylation of Thr-36/45, and the phosphorylation of Ser-64 by mTOR was facilitated by phosphorylation of Thr-36, Thr-45, and Thr-69. In these respects the phosphorylation of PHAS-I by mTOR in vitro resembles the ordered phosphorylation of PHAS-I in cells.  相似文献   

14.
Activity and stability of the proto-oncogene c-Myb are regulated by post-translational modifications, though the molecular mechanisms underlying such control are only partially understood. Here we describe the functional interaction of c-Myb with Pin1, an isomerase that binds to phosphorylated Ser/Thr-Pro motifs. We found that co-expression of c-Myb and Pin1 led to a net increase of c-Myb transactivation activity, both on reporter constructs as well as on an endogenous target gene. DNA-binding studies revealed that Pin1 did not increase the association of c-Myb with its response element in DNA. The increase of c-Myb transactivation activity was strictly dependent on the presence of an active catalytic center in Pin1. We provide evidence that c-Myb and Pin1 physically interacted, both upon ectopic expression of the proteins in HEK-293 cells as well as in the more physiological setting of HL60 cells, where c-Myb and Pin1 are resident proteins. By point mutating each individual Ser/Thr-Pro motif in c-Myb as well as by using deletion mutants we show that S528 in the EVES-motif was the docking site for Pin1. Mass spectrometry confirmed that S528 is phosphorylated in vivo. Finally, functional studies showed that mutation of S528 to alanine almost abolished the increase of transactivation activity by Pin1. This study reveals a new paradigm by which phosphorylation controls c-Myb function.  相似文献   

15.
In order to examine the possible involvements of Ca2+/calmodulin-dependent protein kinases (CaM kinases) in the regulation of ribosomal functions, we tested the phosphorylation of rat ribosomal protein S19 (RPS19) by various CaM kinases in vitro . We found that CaM kinase Iα, but not CaM kinase Iβ1, Iβ2, II, or IV, robustly phosphorylated RPS19. From the consensus phosphorylation site sequence, Ser59, Ser90, and Thr124 were likely to be phosphorylated; therefore, we mutated each amino acid to alanine and found that the mutation of Ser59 to alanine strongly attenuated phosphorylation by CaM kinase Iα, suggesting that Ser59 was a major phosphorylation site. Furthermore, we produced a specific antibody against RPS19 phosphorylated at Ser59, and found that Ser59 was phosphorylated both in GT1-7 cells and rat brain. Phosphorylation of RPS19 in GT1-7 cells was inhibited by KN93, an inhibitor of CaM kinases. Immunoblot analysis after subcellular fractionation of rat brain demonstrated that phosphorylated RPS19 was present in 80S ribosomes. Phosphorylation of RPS19 by CaM kinase Iα augmented the interaction of RPS19 with the previously identified S19 binding protein. These results suggest that CaM kinase Iα regulates the functions of RPS19 through phosphorylation of Ser59.  相似文献   

16.
The retinoblastoma protein Rb is critical for the regulation of mammalian cell cycle entry. Hypophosphorylated Rb is considered to be the active form and directs G1 arrest, while hyperphosphorylated Rb permits the transition from G1 to S phase for cell proliferation. Upon stimulation by various growth factors, Rb appears to be phosphorylated by a cascade of phosphorylation events mediated mainly by kinases associated with cyclins D and E. Here we report that in prototype small intestine crypt stem cells (RIEC-6), stimulation with either epidermal growth factor or fetal bovine serum results in an unexpected rapid and sustained Rb phosphorylation at sites Ser780, Ser795, and Thr821 which precedes cyclin D1 expression, cyclin D1/cdk4 complex formation, and cdk4 kinase activity. Rb phosphorylation at Ser780 and Ser795 is prevented by MEK, but not phosphatidylinositol 3-kinase, inhibitors. In vitro, Rb is directly phosphorylated by active ERK1/2 as shown by [gamma-32P]ATP labeling. The phosphorylation sites are further directed to Ser780 and Ser795 by kinase assays using recombined active ERK1/2 or immunoprecipitated phospho-ERK1/2 from mitogen stimulated cells. Pull-down assays revealed that Rb interacts with active ERK1/2 but not their inactive unphosphorylated forms. Upon EGF stimulation, phosphorylated ERK1/2 co-immunoprecipitates together with phosphorylated Rb. Collectively, these results demonstrate a novel rapid Rb phosphorylation at specific sites induced by mitogen stimulation in epithelial cells of the small intestine. These data specifically identify ERK1/2 as the kinase responsible for Rb phosphorylation targeted to sites Ser780 and Ser795. It appears that ERK1/2 could be an important link between a mitogenic signal directly to Rb, thereby providing a rapid response mechanism between mitogen stimulation and cell cycle machinery.  相似文献   

17.
Cmk2, a fission yeast Ser/Thr protein kinase homologous to mammalian calmodulin kinases, is essential for oxidative stress response. Cells lacking cmk2 gene were specifically sensitive to oxidative stress conditions. Upon stress, Cmk2 was phosphorylated in vivo, and this phosphorylation was dependent on the stress-activated MAPK Sty1/Spc1. Co-precipitation assays demonstrated that Cmk2 binds Sty1. Furthermore, in vivo or in vitro activated Sty1 was able to phosphorylate Cmk2, and the phosphorylation occurred at the C-terminal regulatory domain at Thr-411. Cell lethality caused by overexpression of Wis1 MAPK kinase was abolished by deletion of cmk2 or by mutation of Thr-411 of Cmk2. Taken together, our data suggest that Cmk2 acts downstream of Sty1 and is an essential kinase for oxidative stress responses.  相似文献   

18.
Phosphorylation of human p53 on Thr-55   总被引:5,自引:0,他引:5  
Gatti A  Li HH  Traugh JA  Liu X 《Biochemistry》2000,39(32):9837-9842
The pleiotropic function of p53 is believed to be greatly influenced by phosphorylation, and several sites on p53 are known to be targets for distinct protein kinases. In this study, we observed that affinity-purified p53 from overexpressing cells was phosphorylated by a co-purified protein kinase in vitro. To identify phosphorylation site(s), the resulting phosphorylated p53 protein was subjected to primary and secondary proteolytic cleavage, and phosphopeptides were fractionated by a two-dimensional peptide gel system. Phosphoamino acid analysis and manual Edman degradation of the isolated phosphopeptides enabled us to unequivocally identify Thr-55 as the major phosphorylation site on p53. Furthermore, comparative phosphopeptide mapping data suggest that DNA-PK is not the kinase responsible for this phosphorylation. Significantly, using a phospho-specific antibody for Thr-55, we have shown that Thr-55 is indeed phosphorylated in vivo. These data define Thr-55 as a novel phosphorylation site and for the first time show threonine phosphorylation of human p53.  相似文献   

19.
20.
Us3 is a serine-threonine protein kinase encoded by herpes simplex virus 1 (HSV-1). As reported here, we attempted to identify the previously unreported physiological substrate of Us3 in HSV-1-infected cells. Our results were as follows. (i) Bioinformatics analysis predicted two putative Us3 phosphorylation sites in the viral envelope glycoprotein B (gB) at codons 557 to 562 (RRVSAR) and codons 884 to 889 (RRNTNY). (ii) In in vitro kinase assays, the threonine residue at position 887 (Thr-887) in the gB domain was specifically phosphorylated by Us3, while the serine residue at position 560 was not. (iii) The phosphorylation of gB Thr-887 in Vero cells infected with wild-type HSV-1 was specifically detected using an antibody that recognized phosphorylated serine or threonine residues with arginine at the −3 and −2 positions. (iv) The phosphorylation of gB Thr-887 in infected cells was dependent on the kinase activity of Us3. (v) The replacement of Thr-887 with alanine markedly upregulated the cell surface expression of gB in infected cells, whereas replacement with aspartic acid, which sometimes mimics constitutive phosphorylation, restored the wild-type phenotype. The upregulation of gB expression on the cell surface also was observed in cells infected with a recombinant HSV-1 encoding catalytically inactive Us3. These results supported the hypothesis that Us3 phosphorylates gB and downregulates the cell surface expression of gB in HSV-1-infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号