共查询到20条相似文献,搜索用时 0 毫秒
1.
Giuseppe Maulucci Michela Chiarpotto Massimiliano Papi Daniela Samengo Giovambattista Pani Marco De Spirito 《Autophagy》2015,11(10):1905-1916
Although numerous techniques have been developed to monitor autophagy and to probe its cellular functions, these methods cannot evaluate in sufficient detail the autophagy process, and suffer limitations from complex experimental setups and/or systematic errors. Here we developed a method to image, contextually, the number and pH of autophagic intermediates by using the probe mRFP-GFP-LC3B as a ratiometric pH sensor. This information is expressed functionally by AIPD, the pH distribution of the number of autophagic intermediates per cell. AIPD analysis reveals how intermediates are characterized by a continuous pH distribution, in the range 4.5–6.5, and therefore can be described by a more complex set of states rather than the usual biphasic one (autophagosomes and autolysosomes). AIPD shape and amplitude are sensitive to alterations in the autophagy pathway induced by drugs or environmental states, and allow a quantitative estimation of autophagic flux by retrieving the concentrations of autophagic intermediates. 相似文献
2.
Mario Mauthe Idil Orhon Cecilia Rocchi Xingdong Zhou Morten Luhr Kerst-Jan Hijlkema 《Autophagy》2018,14(8):1435-1455
Macroautophagy/autophagy is a conserved transport pathway where targeted structures are sequestered by phagophores, which mature into autophagosomes, and then delivered into lysosomes for degradation. Autophagy is involved in the pathophysiology of numerous diseases and its modulation is beneficial for the outcome of numerous specific diseases. Several lysosomal inhibitors such as bafilomycin A1 (BafA1), protease inhibitors and chloroquine (CQ), have been used interchangeably to block autophagy in in vitro experiments assuming that they all primarily block lysosomal degradation. Among them, only CQ and its derivate hydroxychloroquine (HCQ) are FDA-approved drugs and are thus currently the principal compounds used in clinical trials aimed to treat tumors through autophagy inhibition. However, the precise mechanism of how CQ blocks autophagy remains to be firmly demonstrated. In this study, we focus on how CQ inhibits autophagy and directly compare its effects to those of BafA1. We show that CQ mainly inhibits autophagy by impairing autophagosome fusion with lysosomes rather than by affecting the acidity and/or degradative activity of this organelle. Furthermore, CQ induces an autophagy-independent severe disorganization of the Golgi and endo-lysosomal systems, which might contribute to the fusion impairment. Strikingly, HCQ-treated mice also show a Golgi disorganization in kidney and intestinal tissues. Altogether, our data reveal that CQ and HCQ are not bona fide surrogates for other types of late stage lysosomal inhibitors for in vivo experiments. Moreover, the multiple cellular alterations caused by CQ and HCQ call for caution when interpreting results obtained by blocking autophagy with this drug. 相似文献
3.
《Autophagy》2013,9(4):696-698
Sirolimus (rapamycin), an inhibitor of the mechanistic target of rapamycin (MTOR), was originally proposed as an immunosuppressant to prevent rejection of solid organ transplants. There were expectations that MTOR inhibitors would replace nephrotoxic calcineurin inhibitors (CNIs). Despite its potential advantages, evidence that sirolimus causes de novo or worsening proteinuria is unequivocal. Given the well-recognized proteinuric effect of MTOR inhibitors, we were interested in understanding its role in maintaining the glomerular filtration barrier. To investigate this in vivo, we developed a mouse model with a podocyte selective deletion of the Mtor gene (Mtor pod-KO). 相似文献
4.
Cinà DP Onay T Paltoo A Li C Maezawa Y De Arteaga J Jurisicova A Quaggin SE 《Autophagy》2012,8(4):696-698
Sirolimus (rapamycin), an inhibitor of the mechanistic target of rapamycin (MTOR), was originally proposed as an immunosuppressant to prevent rejection of solid organ transplants. There were expectations that MTOR inhibitors would replace nephrotoxic calcineurin inhibitors (CNIs). Despite its potential advantages, evidence that sirolimus causes de novo or worsening proteinuria is unequivocal. Given the well-recognized proteinuric effect of MTOR inhibitors, we were interested in understanding its role in maintaining the glomerular filtration barrier. To investigate this in vivo, we developed a mouse model with a podocyte selective deletion of the Mtor gene (Mtor pod-KO). 相似文献
5.
Jiefei Geng 《Autophagy》2017,13(4):639-641
Macroautophagy/autophagy remains a rapidly advancing research topic, and there continues to be a need for constantly evolving methodology to investigate this pathway at each individual step. Accordingly, new assays to measure autophagic flux in a robust and reliable manner are essential to understand the mechanism and physiological roles of autophagy. Kaizuka et al. recently reported a new fluorescence probe, GFP-LC3-RFP-LC3ΔG to directly demonstrate autophagic flux without being combined with lysosomal inhibitors (see the Kaizuka et al. punctum in this issue of the journal). When expressed in cells, the probe is cleaved into a degradable/quenchable part, GFP-LC3, and stable/cytosolic part, RFP-LC3ΔG. The latter serves as an internal control and a decrease of the GFP:RFP ratio indicates the occurrence of autophagy. Since the key index of this probe is the degradation of GFP-LC3, it can be used to measure the cumulative effect of basal autophagy. The assay is applicable to high-throughput drug discovery as well as in vivo analysis. 相似文献
6.
Lysosomal trafficking in rat cardiac myocytes 总被引:2,自引:0,他引:2
V S Marjom?ki A P Huovila M A Surkka I Jokinen A Salminen 《The journal of histochemistry and cytochemistry》1990,38(8):1155-1164
By immunolabeling of cryosections, we have characterized in rat cardiac myocytes the cation-independent mannose-6-phosphate receptor (MPR), a lysosomal membrane glycoprotein, lgp120, and a lysosomal enzyme, MEP (homologous to cathepsin L). Most of the MPR label was located in large membrane-filled structures (MPR structures) in large clusters of mitochondria adjacent to but distinct from the Golgi complex. Lpg120 and MEP showed typical lysosomal localization throughout the cell, often associated with regions that appeared to contain autophagosome-like structures. In addition, MEP and lgp120 co-localized within MPR structures. MEP and MPR were localized inside the lumen of MPR structures. MPR was associated mostly with inner membranes, whereas lgp120 was predominantly bound to the outer limiting membrane. MPR, lgp120, and MEP were not detected in Golgi stacks, but some labeling was seen in the putative TGN. Our data suggest that the MPR structures are prelysosomes involved in lysosomal enzyme targeting in rat cardiac myocytes. 相似文献
7.
《Autophagy》2013,9(1):180-181
For decades, a marvelous amount of work has been performed to identify molecules that regulate distinct stages of membrane transport in the ER-Golgi secretory pathway and autophagy, which are implicated in many human diseases. However, an important missing piece in this puzzle is how the cell dynamically coordinates these crisscrossed trafficking pathways in response to different stimuli. Our recent study has identified UVRAG as a mode-switching protein that coordinates Golgi-ER retrograde and autophagic trafficking. UVRAG recognizes phosphatidylinositol-3-phosphate (PtdIns3P) and locates to the ER, where it couples the ER tethering complex containing RINT1 to govern Golgi-ER retrograde transport. Intriguingly, when autophagy is induced, UVRAG undergoes a “partnering shift” from the ER tethering complex to the BECN1 autophagy complex, resulting in concomitant inhibition of Golgi-ER transport and the activation of ATG9 autophagic trafficking. Therefore, Golgi-ER retrograde and autophagy-related membrane trafficking are functionally interdependent and tightly regulated by UVRAG to ensure spatiotemporal fidelity of protein transport and organelle homeostasis, providing distinguished insights into trafficking-related diseases. 相似文献
8.
Xiaojie Zhang Sheng Chen Lin Song Yu Tang Yufei Shen Li Jia Weidong Le 《Autophagy》2014,10(4):588-602
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder caused by selective motor neuron degeneration. Abnormal protein aggregation and impaired protein degradation pathways may contribute to the disease pathogenesis. Although it has been reported that autophagy is altered in patients and animal model of ALS, little is known about the role of autophagy in motor neuron degeneration in this disease. Our previous study shows that rapamycin, an MTOR-dependent autophagic activator, accelerates disease progression in the SOD1G93A mouse model of ALS. In the present report, we have assessed the role of the MTOR-independent autophagic pathway in ALS by determining the effect of the MTOR-independent autophagic inducer trehalose on disease onset and progression, and on motor neuron degeneration in SOD1G93A mice. We have found that trehalose significantly delays disease onset prolongs life span, and reduces motor neuron loss in the spinal cord of SOD1G93A mice. Most importantly, we have documented that trehalose decreases SOD1 and SQSTM1/p62 aggregation, reduces ubiquitinated protein accumulation, and improves autophagic flux in the motor neurons of SOD1G93A mice. Moreover, we have demonstrated that trehalose can reduce skeletal muscle denervation, protect mitochondria, and inhibit the proapoptotic pathway in SOD1G93A mice. Collectively, our study indicated that the MTOR-independent autophagic inducer trehalose is neuroprotective in the ALS model and autophagosome-lysosome fusion is a possible therapeutic target for the treatment of ALS. 相似文献
9.
《Autophagy》2013,9(8):1215-1226
Monitoring autophagic flux is important for the analysis of autophagy. Tandem fluorescent-tagged LC3 (mRFP-EGFP-LC3) is a convenient assay for monitoring autophagic flux based on different pH stability of EGFP and mRFP fluorescent proteins. However, it has been reported that there is still weak fluorescence of EGFP in acidic environments (pH between 4 and 5) or acidic lysosomes. So it is possible that autolysosomes are labeled with yellow signals (GFP+RFP+ puncta), which results in misinterpreting autophagic flux results. Therefore, it is desirable to choose a monomeric green fluorescent protein that is more acid sensitive than EGFP in the assay of autophagic flux. Here, we report on an mTagRFP-mWasabi-LC3 reporter, in which mWasabi is more acid sensitive than EGFP and has no fluorescence in acidic lysosomes. Meanwhile, mTagRFP-mWasabi-LC3ΔG was constructed as the negative control for this assay. Compared with mRFP-EGFP-LC3, our results showed that this reporter is more sensitive and accurate in detecting the accumulation of autophagosomes and autolysosomes. Using this reporter, we find that high-dose rapamycin (30 μM) will impair autophagic flux, inducing many more autophagosomes than autolysosomes in HeLa cells, while low-dose rapamycin (500 nM) has an opposite effect. In addition, other chemical autophagy inducers (cisplatin, staurosporine and Z18) also elicit much more autophagosomes at high doses than those at low doses. Our results suggest that the dosage of chemical autophagy inducers would obviously influence autophagic flux in cells. 相似文献
10.
《Autophagy》2013,9(4):588-602
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder caused by selective motor neuron degeneration. Abnormal protein aggregation and impaired protein degradation pathways may contribute to the disease pathogenesis. Although it has been reported that autophagy is altered in patients and animal model of ALS, little is known about the role of autophagy in motor neuron degeneration in this disease. Our previous study shows that rapamycin, an MTOR-dependent autophagic activator, accelerates disease progression in the SOD1G93A mouse model of ALS. In the present report, we have assessed the role of the MTOR-independent autophagic pathway in ALS by determining the effect of the MTOR-independent autophagic inducer trehalose on disease onset and progression, and on motor neuron degeneration in SOD1G93A mice. We have found that trehalose significantly delays disease onset prolongs life span, and reduces motor neuron loss in the spinal cord of SOD1G93A mice. Most importantly, we have documented that trehalose decreases SOD1 and SQSTM1/p62 aggregation, reduces ubiquitinated protein accumulation, and improves autophagic flux in the motor neurons of SOD1G93A mice. Moreover, we have demonstrated that trehalose can reduce skeletal muscle denervation, protect mitochondria, and inhibit the proapoptotic pathway in SOD1G93A mice. Collectively, our study indicated that the MTOR-independent autophagic inducer trehalose is neuroprotective in the ALS model and autophagosome-lysosome fusion is a possible therapeutic target for the treatment of ALS. 相似文献
11.
Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization 总被引:21,自引:8,他引:21
下载免费PDF全文

《The Journal of cell biology》1994,124(6):903-913
Under nutrient-deficient conditions, the yeast S. cerevisiae sequesters its own cytoplasmic components into vacuoles in the form of "autophagic bodies" (Takeshige, K., M. Baba, S. Tsuboi, T. Noda, and Y. Ohsumi. 1992. J. Cell Biol. 119:301-311). Immunoelectron microscopy showed that two cytosolic marker enzymes, alcohol dehydrogenase and phosphoglycerate kinase, are present in the autophagic bodies at the same densities as in the cytosol, but are not present in vacuolar sap, suggesting that cytosolic enzymes are also taken up into the autophagic bodies. To understand this process, we performed morphological analyses by transmission and immunological electron microscopies using a freeze- substitution fixation method. Spherical structures completely enclosed in a double membrane were found near the vacuoles of protease-deficient mutant cells when the cells were shifted to nutrient-starvation media. Their size, membrane thickness, and contents of double membrane- structures corresponded well with those of autophagic bodies. Sometimes these double membrane structures were found to be in contact with the vacuolar membrane. Furthermore their outer membrane was occasionally seen to be continuous with the vacuolar membrane. Histochemical staining of carbohydrate strongly suggested that the structures with double membranes fused with the vacuoles. These results indicated that these structures are precursors of autophagic bodies, "autophagosomes" in yeast. All the data obtained suggested that the autophagic process in yeast is essentially similar to that of the lysosomal system in mammalian cells. 相似文献
12.
Regulation of AMPA receptor trafficking by N-cadherin 总被引:1,自引:0,他引:1
Dendritic spines are dynamically regulated, both morphologically and functionally, by neuronal activity. Morphological changes are mediated by a variety of synaptic proteins, whereas functional changes can be dramatically modulated by the regulation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor trafficking. Although these two forms of plasticity appear to be highly coordinated, the connections between them are not fully understood. In this study the synaptic cell adhesion molecule N-cadherin was found to associate with AMPA receptors and regulate AMPA receptor trafficking in neurons. N-cadherin and beta-catenin formed a protein complex with AMPA receptors in vivo, and this association was regulated by extracellular Ca2+. In addition, these proteins co-clustered at synapses in cultured neurons. In heterologous cells and in cultured neurons, overexpression of wild-type N-cadherin specifically increased the surface expression level of the AMPA receptor subunit glutamate receptor 1 (GluR1) and this effect was reversed by a dominant-negative form of N-cadherin. Finally, GluR1 increased the surface expression of N-cadherin in heterologous cells. Importantly, recent studies suggest that N-cadherin and beta-catenin play key roles in structural plasticity in neurons. Therefore, our data suggest that the association of N-cadherin with AMPA receptors may serve as a biochemical link between structural and functional plasticity of synapses. 相似文献
13.
《Autophagy》2013,9(3):322-329
Autophagy, a highly conserved cellular mechanism wherein various cellular components are broken down and recycled through lysosomes, has been implicated in the development of heart failure. However, tools to measure autophagic flux in vivo have been limited. Here, we tested whether monodansylcadaverine (MDC) and the lysosomotropic drug chloroquine could be used to measure autophagic flux in both in vitro and in vivo model systems. Using HL-1 cardiac-derived myocytes transfected with GFP-tagged LC3 to track changes in autophagosome formation, autophagy was stimulated by mTOR inhibitor rapamycin. Administration of chloroquine to inhibit lysosomal activity enhanced the rapamycin-induced increase in the number of cells with numerous GFP-LC3-positive autophagosomes. The chloroquine-induced increase of autophagosomes occurred in a dose-dependent manner between 1 µM and 8 µM, and reached a maximum 2 hour after treatment. Chloroquine also enhanced the accumulation of autophagosomes in cells stimulated with hydrogen peroxide, while it attenuated that induced by Bafilomycin A1, an inhibitor of V-ATPase that interferes with fusion of autophagosomes with lysosomes. The accumulation of autophagosomes was inhibited by 3-methyladenine, which is known to inhibit the early phase of the autophagic process. Using transgenic mice expressing mCherry-LC3 exposed to rapamycin for 4 hr, we observed an increase in mCherry-LC3-labeled autophagosomes in myocardium, which was further increased by concurrent administration of chloroquine, thus allowing determination of flux as a more precise measure of autophagic activity in vivo. MDC injected 1 hr before sacrifice colocalized with mCherry-LC3 puncta, validating its use as a marker of autophagosomes. This study describes a method to measure autophagic flux in vivo even in non-transgenic animals, using MDC and chloroquine. 相似文献
14.
Autophagy, a highly conserved cellular mechanism wherein various cellular components are broken down and recycled through lysosomes, has been implicated in the development of heart failure. However, tools to measure autophagic flux in vivo have been limited. Here, we tested whether monodansylcadaverine (MDC) and the lysosomotropic drug chloroquine could be used to measure autophagic flux in both in vitro and in vivo model systems. Using HL-1 cardiac-derived myocytes transfected with GFP-tagged LC3 to track changes in autophagosome formation, autophagy was stimulated by mTOR inhibitor rapamycin. Administration of chloroquine to inhibit lysosomal activity enhanced the rapamycin-induced increase in the number of cells with numerous GFP-LC3-positive autophagosomes. The chloroquine-induced increase of autophagosomes occurred in a dose-dependent manner between 1 microM and 8 microM, and reached a maximum 2 hour after treatment. Chloroquine also enhanced the accumulation of autophagosomes in cells stimulated with hydrogen peroxide, while it attenuated that induced by Bafilomycin A1, an inhibitor of V-ATPase that interferes with fusion of autophagosomes with lysosomes. The accumulation of autophagosomes was inhibited by 3-methyladenine, which is known to inhibit the early phase of the autophagic process. Using transgenic mice expressing 3 mCherry-LC3 exposed to rapamycin for 4 hr, we observed an increase in mCherry-LC3-labeled autophagosomes in myocardium, which was further increased by concurrent administration of chloroquine, thus allowing determination of flux as a more precise measure of autophagic activity in vivo. MDC injected 1 hr before sacrifice colocalized with mCherry-LC3 puncta, validating its use as a marker of autophagosomes. This study describes a method to measure autophagic flux in vivo even in non-transgenic animals, using MDC and chloroquine. 相似文献
15.
Lim J Lee Y Kim HW Rhyu IJ Oh MS Youdim MB Yue Z Oh YJ 《The Journal of biological chemistry》2012,287(28):23271-23282
Bak is a prototypic pro-apoptotic Bcl-2 family protein expressed in a wide variety of tissues and cells. Recent studies have revealed that Bcl-2 family proteins regulate apoptosis as well as autophagy. To investigate whether and how Bak exerts a regulatory role on autophagy-related events, we treated independent cell lines, including MN9D neuronal cells, with nigericin, a K(+)/H(+) ionophore. Treatment of MN9D cells with nigericin led to an increase of LC3-II and p62 levels with concomitant activation of caspase. Ultrastructural examination revealed accumulation of autophagic vacuoles and swollen vacuoles in nigericin-treated cells. We further found that the LC3-II accumulated as a consequence of impaired autophagic flux and the disrupted degradation of LC3-II in nigericin-treated cells. In this cell death paradigm, both transient and stable overexpression of various forms of Bak exerted a protective role, whereas it did not inhibit the extent of nigericin-mediated activation of caspase-3. Subsequent biochemical and electron microscopic studies revealed that overexpressed Bak maintained autophagic flux and reduced the area occupied by swollen vacuoles in nigericin-treated cells. Similar results were obtained in nigericin-treated non-neuronal cells and another proton ionophore-induced cell death paradigm. Taken together, our study indicates that a protective role for Bak during ionophore-induced cell death may be closely associated with its regulatory effect on maintenance of autophagic flux and vacuole homeostasis. 相似文献
16.
《Autophagy》2013,9(7):929-935
Reliable and quantitative assays to measure in vivo autophagy are essential. Currently, there are varied methods for monitoring autophagy; however, it is a challenge to measure "autophagic flux" in an in vivo model system. Conversion and subsequent degradation of the microtubule-associated protein light chain 3 (MAP1-LC3/LC3) to the autophagosome associated LC3II isoform can be evaluated by immunoblot. However, static levels of endogenous LC3II protein may render possible misinterpretations since LC3II levels can increase, decrease or remain unchanged in the setting of autophagic induction. Therefore, it is necessary to measure LC3II protein levels in the presence and absence of lysomotropic agents that block the degradation of LC3II, a technique aptly named the "autophagometer". In order to measure autophagic flux in mouse skeletal muscle, we treated animals with the microtubule depolarizing agent colchicine. Two days of 0.4 mg/kg/day intraperitoneal colchicine blocked autophagosome maturation to autolysosomes and increased LC3II protein levels in mouse skeletal muscle by >100%. The addition of an autophagic stimulus such as dietary restriction or rapamycin led to an additional increase in LC3II above that seen with colchicine alone. Moreover, this increase was not apparent in the absence of a "colchicine block." Using this assay, we evaluated the autophagic response in skeletal muscle upon denervation induced atrophy. Our studies highlight the feasibility of performing an "in vivo autophagometer" study using colchicine in skeletal muscle. 相似文献
17.
Autophagy is a spatially regulated process in axons; autophagosomes form preferentially in the distal axon tip then move actively and processively toward the cell body. Despite the primarily unidirectional transport observed in live-cell imaging experiments, both anterograde-directed KIF5/kinesin-1 motors and retrograde-directed dynein motors are tightly associated with axonal autophagosomes. Here, we discuss our recent work identifying the scaffolding protein MAPK8IP1/JIP1 (mitogen-activated protein kinase 8 interacting protein 1) as a key regulator of autophagosome transport in neurons. MAPK8IP1 tightly coordinates motor activity to ensure the fidelity of retrograde autophagosome transport in the axon. 相似文献
18.
Shanshan He Douglas O’Connell Xiaowei Zhang Yongfei Yang Chengyu Liang 《Autophagy》2014,10(1):180-181
For decades, a marvelous amount of work has been performed to identify molecules that regulate distinct stages of membrane transport in the ER-Golgi secretory pathway and autophagy, which are implicated in many human diseases. However, an important missing piece in this puzzle is how the cell dynamically coordinates these crisscrossed trafficking pathways in response to different stimuli. Our recent study has identified UVRAG as a mode-switching protein that coordinates Golgi-ER retrograde and autophagic trafficking. UVRAG recognizes phosphatidylinositol-3-phosphate (PtdIns3P) and locates to the ER, where it couples the ER tethering complex containing RINT1 to govern Golgi-ER retrograde transport. Intriguingly, when autophagy is induced, UVRAG undergoes a “partnering shift” from the ER tethering complex to the BECN1 autophagy complex, resulting in concomitant inhibition of Golgi-ER transport and the activation of ATG9 autophagic trafficking. Therefore, Golgi-ER retrograde and autophagy-related membrane trafficking are functionally interdependent and tightly regulated by UVRAG to ensure spatiotemporal fidelity of protein transport and organelle homeostasis, providing distinguished insights into trafficking-related diseases. 相似文献
19.
ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells
A Romagnoli MP Etna E Giacomini M Pardini ME Remoli M Corazzari L Falasca D Goletti V Gafa R Simeone G Delogu M Piacentini R Brosch GM Fimia EM Coccia 《Autophagy》2012,8(9):1357-1370
Emerging evidence points to an important role of autophagy in the immune response mediated by dendritic cells (DC) against Mycobacterium tuberculosis (Mtb). Since current vaccination based on Bacillus Calmette-Guerin (BCG) is unable to stop the tuberculosis epidemic, a deeper comprehension of the alterations induced by Mtb in DC is essential for setting new vaccine strategies. Here, we compared the capacity of virulent (H37Rv) and avirulent (H37Ra) Mtb strains as well as BCG to modulate autophagy in human primary DC. We found that Mtb H37Rv impairs autophagy at the step of autophagosome-lysosome fusion. In contrast, neither Mtb H37Ra nor BCG strains were able to hamper autophagosome maturation. Both these attenuated strains have a functional inhibition of the 6kD early secreted antigenic target ESAT-6, an effector protein of the ESAT-6 Secretion System-1(ESX-1)/type VII secretion system. Notably, the ability to inhibit autophagy was fully restored in recombinant BCG and Mtb H37Ra strains in which ESAT-6 secretion was re-established by genetic complementation using either the ESX-1 region from Mtb (BCG::ESX-1) or the PhoP gene (Mtb H37Ra::PhoP), a regulator of ESAT-6 secretion. Importantly, the autophagic block induced by Mtb was overcome by rapamycin treatment leading to an increased interleukin-12 expression and, in turn, to an enhanced capacity to expand a Th1-oriented response. Collectively, our study demonstrated that Mtb alters the autophagic machinery through the ESX-1 system, and thereby opens new exciting perspectives to better understand the relationship between Mtb virulence and its ability to escape the DC-mediated immune response. 相似文献
20.
ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells
《Autophagy》2013,9(9):1357-1370
Emerging evidence points to an important role of autophagy in the immune response mediated by dendritic cells (DC) against Mycobacterium tuberculosis (Mtb). Since current vaccination based on Bacillus Calmette-Guerin (BCG) is unable to stop the tuberculosis epidemic, a deeper comprehension of the alterations induced by Mtb in DC is essential for setting new vaccine strategies. Here, we compared the capacity of virulent (H37Rv) and avirulent (H37Ra) Mtb strains as well as BCG to modulate autophagy in human primary DC. We found that Mtb H37Rv impairs autophagy at the step of autophagosome-lysosome fusion. In contrast, neither Mtb H37Ra nor BCG strains were able to hamper autophagosome maturation. Both these attenuated strains have a functional inhibition of the 6kD early secreted antigenic target ESAT-6, an effector protein of the ESAT-6 Secretion System-1(ESX-1)/type VII secretion system. Notably, the ability to inhibit autophagy was fully restored in recombinant BCG and Mtb H37Ra strains in which ESAT-6 secretion was re-established by genetic complementation using either the ESX-1 region from Mtb (BCG::ESX-1) or the PhoP gene (Mtb H37Ra::PhoP), a regulator of ESAT-6 secretion. Importantly, the autophagic block induced by Mtb was overcome by rapamycin treatment leading to an increased interleukin-12 expression and, in turn, to an enhanced capacity to expand a Th1-oriented response. Collectively, our study demonstrated that Mtb alters the autophagic machinery through the ESX-1 system, and thereby opens new exciting perspectives to better understand the relationship between Mtb virulence and its ability to escape the DC-mediated immune response. 相似文献