首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The integrin surface molecule termed lymphocyte functional antigen-1 (LFA-1), and its physiological ligand intercellular adhesion molecule-1 (ICAM-1), have been proven to play a relevant role in several immune reactions where cell-to-cell contact is required: these reactions include allogeneic mixed lymphocyte reaction (MLR) and direct cytotoxicity. In the present study, we show that monoclonal antibodies (mAbs) directed to LFA-1 as well as to ICAM-1 molecules are able to inhibit T cell proliferation in autologous MLR (AMLR). Such an in vitro reaction is generally considered a functional model of Ia-mediated immunocompetent cell cooperation, and is impaired in several pathological conditions. It is noteworthy that the LFA-1 molecule is largely represented on the T cell surface, whereas ICAM-1 is poorly expressed on resting T cells: autologous stimulation slightly increases ICAM-1 expression. Pretreatment studies indicate that the inhibitory effect of anti-ICAM-1 mAb on T cell proliferation in AMLR is exerted on responder T cells.  相似文献   

2.
3.
To examine the role of the ICAM-1 C-terminal domain in transendothelial T lymphocyte migration and ICAM-1-mediated signal transduction, mutant human (h)ICAM-1 molecules were expressed in rat brain microvascular endothelial cells. The expression of wild-type hICAM-1 resulted in a significant increase over basal levels in both adhesion and transendothelial migration of T lymphocytes. Endothelial cells (EC) expressing ICAM-1 in which the tyrosine residue at codon 512 was substituted with phenylalanine (hICAM-1(Y512F)) also exhibited increased lymphocyte migration, albeit less than that with wild-type hICAM-1. Conversely, the expression of truncated hICAM-1 proteins, in which either the intracellular domain was deleted (hICAM-1DeltaC) or both the intracellular and transmembrane domains were deleted through construction of a GPI anchor (GPI-hICAM-1), did not result in an increase in lymphocyte adhesion, and their ability to increase transendothelial migration was attenuated. Truncated hICAM-1 proteins were also unable to induce ICAM-1-mediated Rho GTPase activation. EC treated with cell-permeant penetratin-ICAM-1 peptides comprising human or rat ICAM-1 intracellular domain sequences inhibited transendothelial lymphocyte migration, but not adhesion. Peptides containing a phosphotyrosine residue were equipotent in inhibiting lymphocyte migration. These data demonstrate that the intracellular domain of ICAM-1 is essential for transendothelial migration of lymphocytes, and that peptidomimetics of the ICAM-1 intracellular domain can also inhibit this process. Such competitive inhibition of transendothelial lymphocyte migration in the absence of an affect on adhesion further implicates ICAM-1-mediated signaling events in the facilitation of T lymphocyte migration across brain EC. Thus, agents that mimic the ICAM-1 intracellular domain may be attractive targets for novel anti-inflammatory therapeutics.  相似文献   

4.
The staphylococcal enterotoxins and related microbial T cell mitogens stimulate T cells by cross-linking variable parts of the T cell receptor (TCR) with MHC class II molecules on accessory or target cells. We have used cloned human T cells and defined tumor cells as accessory cells (AC) to study the requirements for T cell activation by these toxins. On AC expressing high levels of CD54 (intercellular adhesion molecule-1, ICAM-1) and CD58 (lymphocyte function-associated antigen-3, LFA-3), mAb to CD2 were relatively ineffective in inhibiting the response to the toxins and antibodies to the lymphocyte function-associated antigen-1 (LFA-1) did not inhibit at all. If added together, however, these mAb inhibited the response completely. Similar results were obtained using antibodies to the target structures of CD2 and LFA-1. In contrast, on cells expressing low levels of LFA-3, mAb to LFA-1 but not to CD2 were strongly inhibitory. The same pattern of inhibition was found when these same cells were used as presenters of specific antigen to the T cells. These data show that adhesions via CD2 or LFA-1 are alternatively required for the stimulation of the T cells by superantigenic toxins and demonstrate another similarity between T cell stimulation by superantigens and by specific antigen recognition.  相似文献   

5.
Human T lymphocyte adhesion to human endothelial cells is the initial event in T cell migration to areas of extravascular inflammation. The molecular basis for T cell-endothelial cell adhesion was investigated using two different cell-cell adhesion assays: a) a fluorescein cell-cell adhesion assay using nonadherent endothelial cells and fluorescein-labeled T lymphocytes, and b) a radionuclide cell-cell adhesion assay using adherent endothelial cells and 51Cr-labelled T cells. Both assay systems demonstrated comparable quantitative assessment of cell-cell adhesions. The assays were performed at 22 degrees C and adhesions were maximal at 30 min. The results of these adhesion assays confirmed previous reports that T cells adhere to endothelial cells. In addition, we have shown that T cells adhere only marginally to foreskin fibroblasts or bone marrow derived fibroblasts. T cell-endothelial cell adhesions were significantly stronger than either monocytes or B lymphoblastoid cells adhesion to endothelial cells. To demonstrate the molecular mechanisms involved in regulating T cell-endothelial cell adhesions, a panel of function-associated monoclonal antibodies (MAb) were tested for their ability to inhibit T cell adhesion. MAb reactive with the leukocyte surface glycoprotein LFA-1 significantly inhibited T cell-endothelial cell adhesions in both assay systems. In contrast, MAb directed at other surface antigens did not inhibit T cell adhesion. The involvement of the LFA-1 glycoprotein in T lymphocyte adhesion to endothelial cells suggest that the LFA-1 molecule may be important in the regulation of leukocyte interactions.  相似文献   

6.
Leukocyte function associated antigen 1 (LFA-1) and intercellular adhesion molecule 1 (ICAM-1) have been shown to be critical for adhesion process and immune response. Modulation or inhibition of the interaction between LFA-1/ICAM-1 interactions can result in therapeutic effects. Our group and others have shown that peptides derived from ICAM-1 or LFA-1 inhibit adhesion in a homotypic T-cell adhesion assay. It is likely that the peptides derived from ICAM-1 bind to LFA-1 and peptides derived from LFA-1 bind to ICAM-1 and inhibit the adhesion interaction. However, there are no concrete experimental evidence to show that peptides bind to either LFA-1 or ICAM-1 and inhibit the adhesion. Using NMR, CD and docking studies we have shown that an LFA-1 derived peptide binds to soluble ICAM-1. Docking studies using "autodock" resulted in LFA-1 peptide interacting with the ICAM-1 protein near Glu34. The proposed model based on our experimental data indicated that the LFA-1 peptide interacts with the protein via three intermolecular hydrogen bonds. Hydrophobic interactions also play a role in stabilizing the complex.  相似文献   

7.
《The Journal of cell biology》1993,123(4):1007-1016
The interaction of lymphocyte function-associated antigen-1 (LFA-1) with its ligands mediates multiple cell adhesion processes of capital importance during immune responses. We have obtained three anti-ICAM-3 mAbs which recognize two different epitopes (A and B) on the intercellular adhesion molecule-3 (ICAM-3) as demonstrated by sequential immunoprecipitation and cross-competitive mAb-binding experiments. Immunoaffinity purified ICAM-3-coated surfaces were able to support T lymphoblast attachment upon cell stimulation with both phorbol esters and cross-linked CD3, as well as by mAb engagement of the LFA-1 molecule with the activating anti-LFA-1 NKI-L16 mAb. T cell adhesion to purified ICAM-3 was completely inhibited by cell pretreatment with mAbs to the LFA-1 alpha (CD11a) or the LFA-beta (CD18) integrin chains. Anti-ICAM-3 mAbs specific for epitope A, but not those specific for epitope B, were able to trigger T lymphoblast homotypic aggregation. ICAM-3-mediated cell aggregation was dependent on the LFA-1/ICAM-1 pathway as demonstrated by blocking experiments with mAbs specific for the LFA-1 and ICAM-1 molecules. Furthermore, immunofluorescence studies on ICAM-3-induced cell aggregates revealed that both LFA-1 and ICAM-1 were mainly located at intercellular boundaries. ICAM-3 was located at cellular uropods, which in small aggregates appeared to be implicated in cell-cell contacts, whereas in large aggregates it appeared to be excluded from cell-cell contact areas. Experiments of T cell adhesion to a chimeric ICAM-1-Fc molecule revealed that the proaggregatory anti-ICAM-3 HP2/19 mAb was able to increase T lymphoblast attachment to ICAM-1, suggesting that T cell aggregation induced by this mAb could be mediated by increasing the avidity of LFA-1 for ICAM-1. Moreover, the HP2/19 mAb was costimulatory with anti-CD3 mAb for T lymphocyte proliferation, indicating that enhancement of T cell activation could be involved in ICAM-3-mediated adhesive phenomena. Altogether, our results indicate that ICAM-3 has a regulatory role on the LFA-1/ICAM-1 pathway of intercellular adhesion.  相似文献   

8.
Human mucosal lymphocyte antigen-1 (HML-1, alphaEbeta7) and E-cadherin, two members of unrelated cell adhesion superfamilies, have evolved to play cooperative roles in gut mucosal immunity. Human E-cadherin is self-ligand mediating intercellular adhesion of epithelial cells, as well as adhesion of intra-epithelial lymphocytes to intestinal enterocytes via an interaction with HML-1. Herein we report that both dimeric and monomeric forms of recombinant mouse E-cadherin-human immunoglobulin Fc chimera self-associate and support attachment of E-cadherin+ mouse colon epithelial cells. Both forms also support the adhesion of mouse MTC-1 T cells via M290, thereby establishing M290 as the functional mouse homologue of HML-1 and revealing that E-cadherin homophilic and heterophilic binding sites are distinct. Adhesion of MTC-1 cells to E-cadherin-Fc was inhibited by arginine-glycine-aspartate (RGD) peptides and vice versa cells bound to immobilized RGD polymer in an M290-dependent fashion, where adhesion was inhibitable with soluble E-cadherin-Fc. Hence, E-cadherin and RGD integrin ligands antagonize cell binding by one another, either by inducing integrin cross-talk or by binding to shared or overlapping sites within M290. Binding of E-cadherin-Fc by HML-1 costimulated the CD3-induced proliferation of purified CD4+ T cells, suggesting that E-cadherin expressed on dendritic cells may play a T cell costimulatory role in addition to facilitating dendritic cell-keratinocyte adhesion.  相似文献   

9.
Abstract

Leukocyte function associated antigen 1 (LFA-1) and intercellular adhesion molecule 1 (ICAM-1) have been shown to be critical for adhesion process and immune response. Modulation or inhibition of the interaction between LFA-1/ICAM-1 interactions can result in therapeutic effects. Our group and others have shown that peptides derived from ICAM- 1 or LFA-1 inhibit adhesion in a homotypic T-cell adhesion assay. It is likely that the peptides derived from ICAM-1 bind to LFA-1 and peptides derived from LFA-1 bind to ICAM- 1 and inhibit the adhesion interaction. However, there are no concrete experimental evidence to show that peptides bind to either LFA-1 or ICAM-1 and inhibit the adhesion. Using NMR, CD and docking studies we have shown that an LFA-1 derived peptide binds to soluble ICAM-1. Docking studies using “autodock” resulted in LFA-1 peptide interacting with the ICAM-1 protein near Glu34. The proposed model based on our experimental data indicated that the LFA-1 peptide interacts with the protein via three intermolecular hydrogen bonds. Hydrophobic interactions also play a role in stabilizing the complex.  相似文献   

10.
The inhibition of protein–protein interactions remains a challenge for traditional small molecule drug discovery. Here we describe the use of DNA-encoded library technology for the discovery of small molecules that are potent inhibitors of the interaction between lymphocyte function-associated antigen 1 and its ligand intercellular adhesion molecule 1. A DNA-encoded library with a potential complexity of 4.1 billion compounds was exposed to the I-domain of the target protein and the bound ligands were affinity selected, yielding an enriched small-molecule hit family. Compounds representing this family were synthesized without their DNA encoding moiety and found to inhibit the lymphocyte function-associated antigen 1/intercellular adhesion molecule-1 interaction with submicromolar potency in both ELISA and cell adhesion assays. Re-synthesized compounds conjugated to DNA or a fluorophore were demonstrated to bind to cells expressing the target protein.  相似文献   

11.
It has been shown that the alpha 4 beta 1 integrin is the lymphocyte receptor for the carboxy terminal cell-binding domain of fibronectin which comprises adhesion sites in Hep 2 and a high affinity site, CS-1, in the type III connecting segment or V (for variable) region. In the present studies, using a series of peptides derived from CS-1, we identify the tripeptide leu-asp-val (LDV), as the minimal peptide capable of supporting stable lymphocyte or melanoma cell adhesion. However, only cells which expressed an active form of the alpha 4 beta 1 complex were capable of attaching to and spreading on LDV peptide. On a molar basis, LDV minimal peptides were either not active or 10-20 times less active than intact CS-1 in promoting the adhesion of lymphocytes expressing the resting form of the receptor. In cells which express the high avidity form of the receptor, LDV and CS-1 were equally effective in promoting cell adhesion and spreading. The avidity of the alpha 4 beta 1 complex could be altered with mAbs to beta 1 which specifically activate beta 1 dependent function. The high avidity form of the alpha 4 beta 1 complex could be induced on U937 cells, T, and B lymphoblastoid cell lines, or PHA-stimulated T cell blasts. Resting PBL could not be induced to bind LDV peptide conjugates by activating antibodies to beta 1 implying that two signals are required for LDV recognition by T cells. In conclusion, these data show clearly that the minimal peptide for the alpha 4 beta 1 complex in CS-1 is the LDV sequence. Although numerous cell populations can interact with intact CS-1 only cells which express an active alpha 4 beta 1 complex can bind the LDV sequence. This implies that cell interaction with the carboxy terminal cell-binding domain of fibronectin can be regulated at several levels: (a) alpha 4 beta 1 expression; (b) activation of the alpha 4 beta 1 complex; and (c) alternate splicing of CS-1 into V+ isoforms of fibronectin.  相似文献   

12.
Previous studies have shown that inflammatory pathologies are mediated by lymphocyte adhesion to endothelium and subsequent transmigration through the endothelial monolayer. Lymphocyte-endothelial adherence is, in part, caused by the leukocyte integrin LFA-1 binding to ICAM-1, its ligand on endothelial cells. Synthetic peptides based on specific amino acid sequences of human ICAM-1 inhibit the adherence of a lymphocytic cell line, Molt-4, to cytokine-stimulated endothelial cells. A total of 26 peptides spanning the extracellular domains of ICAM-1 were evaluated for their inhibitory activity in two cell adhesion assays. Binding of fluorescently labeled Molt-4 cells to TNF-stimulated human umbilical vein endothelial cells was inhibited reproducibly by peptides ICAM1-20, ICAM26-50, ICAM40-64, ICAM132-146, and ICAM345-375. Three overlapping sequences of the peptide ICAM40-64, KELLLPGNNRKVYELSNVQEDSQPM, were synthesized and tested as well, and the sequence KELLLPGNNRKV showed the greatest inhibition. The inhibitory activity of these peptides was confirmed using a second assay, inhibition of aggregation of the Epstein-Barr virus-transformed B-lymphoblast line JY. Polyclonal antibodies were developed in rabbits by immunization with two of the peptides and characterized for their ability to inhibit lymphocyte-endothelial adherence. These studies predict potential sites for interaction of the integrin receptor, LFA-1, with its ligand, ICAM-1. Thus lymphocyte-endothelial interaction, and resulting inflammation, may be partially mediated by the association of ICAM-1 with LFA-1 at the specific molecular locations identified in this study.  相似文献   

13.
Ag recognition is achieved through the communication across intercellular contacts between T cells and APCs such as dendritic cells (DC). Despite remarkable progress in delineating detailed molecular components at the intercellular contacts, little is known about the functional roles of physical cross-junctional adhesion between T and DC in shaping T cell responses. In addition, the mechanisms underlying sensitivity and specificity of Ag discrimination by T cells at intercellular contacts remain to be elucidated. In this study, we use single-cell force spectroscopy to probe the mechanical interactions between DC and T cells in response to stimulation with a panel of altered peptide ligands. The results show that intercellular interactions of DC-T cell conjugates exhibited different ranges of interaction forces in peptide-dependent manners that match the ability of the peptides to activate T cells. Elevated calcium mobilization and IL-2 secretion by T cells were only promoted in response to antigenic peptides that induce strong interaction forces, suggesting that mechanically stable DC-T cell contacts are crucial for driving T cell activation. Strong interactions were not solely dependent on cell-surface molecules such as TCRs and the adhesion molecule LFA-1, but were also controlled by cytoskeletal dynamics and the integrity of membrane lipid rafts. These data provide novel mechanical insights into the effect of Ag affinity on intercellular contacts that align with T cell responsiveness.  相似文献   

14.
MHC class II molecules influence antigen-specific CD4+ T lymphocyte responses primed by immunization and infection. CD4+ T cell responses are important for controlling infection by many bacterial pathogens including Anaplasma marginale and are observed in cattle immunized with the protective A. marginale outer membrane (OM) vaccine. Immunogenic proteins that comprise the protective OM vaccine include type IV secretion system (T4SS) proteins VirB9-1, VirB9-2 and VirB10, candidates for inclusion in a multiepitope vaccine. Our goal was to determine the breadth of the VirB9-1, VirB9-2 and VirB10 T cell response and MHC class II restriction elements in six cattle with different MHC class II haplotypes defined by DRB3, DQA and DQB allele combinations for each animal. Overlapping peptides spanning each T4SS protein were tested in T cell proliferation assays with autologous antigen-presenting cells (APC) and artificial APC expressing combinations of bovine DR and DQ molecules. Twenty immunostimulatory peptides were identified; three representing two or more epitopes in VirB9-1, ten representing eight or more epitopes in VirB9-2 and seven representing seven or more epitopes in VirB10. Of the eight DRA/DRB3 molecules, four presented 15 peptides, which was biased as DRA/DRB3*1201 presented ten and DRA/DRB3*1101 presented four peptides. Four DQA/DQB molecules composed of two intrahaplotype and two interhaplotype pairs presented seven peptides, of which five were uniquely presented by DQ molecules. In addition, three functional mixed isotype (DQA/DRB3) restriction elements were identified. The immunogenicity and broad MHC class II presentation of multiple VirB9-1, VirB9-2 and VirB10 peptide epitopes justify their testing as a multiepitope vaccine against A. marginale.  相似文献   

15.
Tudor KS  Hess KL  Cook-Mills JM 《Cytokine》2001,15(4):196-211
Vascular cell adhesion molecule-1 (VCAM-1) activates endothelial cell NADPH oxidase which catalyzes production of reactive oxygen species (ROS). This activity is required for VCAM-1-dependent lymphocyte migration. The focus of our study was to determine whether these VCAM-1-dependent functions are modulated by cytokines. TGF-beta1 or IFN-gamma pretreatment of mouse endothelial cell lines inhibited VCAM-1-dependent B and T cell transendothelial migration without affecting initial lymphocyte adhesion. Neutralizing anti-TGF-beta1 blocked the effects of TGF-beta1 pretreatment of endothelial cells, whereas addition of anti-TGF-beta1 after TGF-beta1 pretreatment of the endothelial cells did not block TGF-beta1-mediated inhibition. Neutralizing anti-IFN-gamma also blocked the inhibitory effects of IFN-gamma. TGF-beta1 and IFN-gamma blocked migration by inhibiting the VCAM-1-stimulated production of low levels of ROS (0.1-0.9 microM H2O2). These results demonstrate that both TGF-beta1 and IFN-gamma directly affect the endothelial cells' ability to promote lymphocyte migration. IL-4 had differing effects on T and B cells during transmigration. IL-4 augmented T cell migration across the endothelial cell lines but did not affect T cell adhesion. Conversely, IL-4 increased B cell adhesion to the endothelial cell lines without affecting migration. In summary, cytokines can directly modulate microvascular endothelial cell intracellular signaling, demonstrating a new level of cytokine regulation of lymphocyte diapedesis.  相似文献   

16.
Sequentially treating human melanoma cell lines by priming with interferon-gamma before adding interferon-beta was previously found to be the most efficient protocol for producing concurrently increased expression of the three surface antigens B7-1, intercellular adhesion molecule-1 and human histocompatibility leucocyte antigens Class I. The present study describes similar outcomes when the same sequential intercellular adhesion molecule-based protocol is applied to murine B16-F10 melanoma cells as well as preclinical studies using the B16-F10 model as a poorly immunogenic melanoma. Thus, treating B16-F10 cells or a highly expressing B7-1 transfected subline (B16-F10/B7-1 hi) by priming with interferon-gamma for 24 h before adding interferon-beta for a further 48 h (interferon-gamma 72/beta 48) increased expression of all three surface antigens, particularly major histocompatibility complex class I whose increased expression was sustained for several days. As a whole tumour cell vaccine, interferon-gamma 72/beta 48 treated B16-F10 cells produced greater levels of cytoxic T lymphocyte response compared to vaccines prepared from cells treated with a single type of interferon. Furthermore, B16-F10 cells expressing high levels of B7-1 and treated using the interferon-gamma 72/beta 48 protocol (interferon-gamma 72/beta 48-treated B16-F10/B7-1 hi) produced substantially increased cytoxic T lymphocyte responses with a fivefold greater synergy than the combined results of either interferon treated or B7-1 expressing cells tested individually. The resulting CD8+ cytoxic T lymphocyte showed greater specificity for B16-F10 cells with tenfold higher killing than for syngeneic EL-4 lymphoma cells. Killing proceeded via the perforin-mediated pathway. CTL responses were induced independent of CD4+ T helper cells. The majority of mice receiving interferon-gamma 72/beta 48-treated B16-F10/B7-1 hi vaccine in vivo remained tumour free after challenge with 5 x 105 live B16-F10 cells expressing intermediate B7-1 levels. The novel strategy described will help enhance vaccine potency when applied clinically to prepare whole cell based cancer vaccine therapies.  相似文献   

17.
This paper presents an analytical and experimental methodology to determine the physical strength of cell adhesion to a planar membrane containing one set of adhesion molecules. In particular, the T lymphocyte adhesion due to the interaction of the lymphocyte function associated molecule 1 on the surface of the cell, with its counter-receptor, intercellular adhesion molecule-1 (ICAM-1), on the planar membrane, was investigated. A micromanipulation method and mathematical analysis of cell deformation were used to determine (a) the area of conjugation between the cell and the substrate and (b) the energy that must be supplied to detach a unit area of the cell membrane from its substrate. T lymphocytes stimulated with phorbol 12-myristate-13-acetate (PMA) conjugated strongly with the planar membrane containing purified ICAM-1. The T lymphocytes attached to the planar membrane deviated occasionally from their round configuration by extending pseudopods but without changing the size of the contact area. These adherent cells were dramatically deformed and then detached when pulled away from the planar membrane by a micropipette. Detachment occurred by a gradual decrease in the radius of the contact area. The physical strength of adhesion between a PMA-stimulated T lymphocyte and a planar membrane containing 1,000 ICAM-1 molecules/micron 2 was comparable to the strength of adhesion between a cytotoxic T cell and its target cell. The comparison of the adhesive energy density, measured at constant cell shape, with the model predictions suggests that the physical strength of cell adhesion may increase significantly when the adhesion bonds in the contact area are immobilized by the actin cytoskeleton.  相似文献   

18.
A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1   总被引:139,自引:0,他引:139  
Homotypic adhesion by phorbol ester-stimulated lymphocytes requires LFA-1 and Mg+2 and does not involve like-like interactions between LFA-1 molecules on adjacent cells. The latter finding suggested that a second molecule, distinct from LFA-1, also participates in LFA-1-dependent adhesion. The identification of such a molecule was the object of this investigation. After immunization with LFA-1-deficient EBV-transformed lymphoblastoid cells, a MAb was obtained that inhibits phorbol ester-stimulated aggregation of LFA-1+ EBV lines. This MAb defines a novel cell surface molecule, which is designated intercellular adhesion molecule 1 (ICAM-1). ICAM-1 is distinct from LFA-1 in both cell distribution and structure. In SDS-PAGE, ICAM-1 isolated from JY cells is a single chain of Mr = 90,000. As shown by MAb inhibition, ICAM-1 participates in phorbol ester-stimulated adhesion reactions of B lymphocyte and myeloid cell lines and T lymphocyte blasts. However, aggregation of one T lymphocyte cell line (SKW-3) was inhibited by LFA-1 but not ICAM-1 MAb. It is proposed that ICAM-1 may be a ligand in many, but not all, LFA-1-dependent adhesion reactions.  相似文献   

19.
These studies demonstrate that the murine intercellular adhesion molecule-1 (ICAM-1) performs at least two roles in enhancing T cell activation. These two roles are evident in both of our experimental systems: with ICAM-1 expressed on the surface of transfected fibroblast cells, and with purified ICAM-1 immobilized on plastic. First, as has been documented by many investigators, ICAM-1 mediates adhesion between ICAM-1- and lymphocyte function-associated Ag-1 (LFA-1)-bearing cells. This adhesive interaction occurs even in the absence of T cell stimulation, although it is increased by addition of phorbol ester and calcium ionophore. Although ICAM-1 expression does markedly increase intercellular adhesion, the increase is significantly less than the improvement ICAM-1 expression makes in the Ag-presenting ability of MHC class II-transfected fibroblast cells. We have investigated whether this difference is due to LFA-1-mediated signaling, and we present data that demonstrates that although ICAM-1 does not deliver costimulatory signals required for T cell activation, the interaction of LFA-1 with ICAM-1 does synergize with TCR-transduced signals. This synergy is observed for ICAM-1 on live and on chemically fixed accessory cells, and for purified ICAM-1 molecules, but in all cases occurs only when the ICAM-1 and the TCR ligands are on the same surface. Finally, when the ICAM-1 is present on the surface of accessory cells, it enhances T cell activation by changing the Ag dose-dependence of the T cell, but when ICAM-1 and CD3 mAb are co-immobilized, ICAM-1 increases the peak response of the T cell without affecting the dose dependence of the response.  相似文献   

20.
Zhou CL  Lu R  Lin G  Yao Z 《Peptides》2011,32(2):408-414
In the past few years, many researches have provided us with much data demonstrating the abilities of synthetic peptides to impact immune response in vitro and in vivo. These peptides were designed according to the structure of some important protein molecules which play a key role in immune response, so they act with specific targets. The class I and II MHC-derived peptides inhibit the TCR recognition of antigen peptide-MHC complex. Rationally designed CD80 and CD154-binding peptides block the interaction between cell surface costimulatory molecules on antigen-presenting cells (APCs) and T cells. Some peptides were designed to inhibit the activities of cell signal proteins, including JNK, NF-κB and NFAT. Some peptide antagonists competitively bind to important cytokines and inhibit their activities, such as TNF-α, TGF-β and IL-1β inhibitory peptides. Adhesion molecule ICAM-1 derived peptides block the T cell adhesion and activation. These immunoregulatory peptides showed therapeutic effect in several animal models, including collagen-induced arthritis (CIA), autoimmune cystitis model, murine skin transplant model and cardiac allograft model. These results give us important implications for the development of a novel therapy for immune mediated diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号