首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The liver is an important target organ of thyroid hormone. However, only a limited number of hepatic target genes have been identified, and little is known about the pattern of their regulation by thyroid hormone. We used a quantitative fluorescent cDNA microarray to identify novel hepatic genes regulated by thyroid hormone. Fluorescent-labeled cDNA prepared from hepatic RNA of T3-treated and hypothyroid mice was hybridized to a cDNA microarray, representing 2225 different mouse genes, followed by computer analysis to compare relative changes in gene expression. Fifty five genes, 45 not previously known to be thyroid hormone-responsive genes, were found to be regulated by thyroid hormone. Among them, 14 were positively regulated by thyroid hormone, and unexpectedly, 41 were negatively regulated. The expression of 8 of these genes was confirmed by Northern blot analyses. Thyroid hormone affected gene expression for a diverse range of cellular pathways and functions, including gluconeogenesis, lipogenesis, insulin signaling, adenylate cyclase signaling, cell proliferation, and apoptosis. This is the first application of the microarray technique to study hormonal regulation of gene expression in vivo and should prove to be a powerful tool for future studies of hormone and drug action.  相似文献   

2.
Hypercholesterolemia is found in patients with hypothyroidism and resistance to thyroid hormone. In this study, we examined cholesterol metabolism in a thyroid hormone receptor beta (TR-beta) mutant mouse model of resistance to thyroid hormone. Whereas studies of cholesterol metabolism have been reported in TR-beta knock-out mice, generalized expression of a non-ligand binding TR-beta protein in this knock-in model more fully recapitulates the hypothyroid state, because the hypothyroid effect of TRs is mediated by the unliganded receptor. In the hypothyroid state, a high cholesterol diet increased serum cholesterol levels in wild-type animals (WT) but either did not change or reduced levels in mutant (MUT) mice relative to hypothyroidism alone. 7alpha-Hydroxylase (CYP7A1) is the rate-limiting enzyme in cholesterol metabolism and mRNA levels were undetectable in the hypothyroid state in all animals. triiodothyronine replacement restored CYP7A1 mRNA levels in WT mice but had minimal effect in MUT mice. In contrast, a high cholesterol diet markedly induced CYP7A1 levels in MUT but not WT mice in the hypothyroid state. Elevation of CYP7A1 mRNA levels and reduced hepatic cholesterol content in MUT animals are likely because of cross-talk between TR-beta and liver X receptor alpha (LXR-alpha), which both bind to a direct repeat + 4 (DR+4) element in the CYP7A1 promoter. In transfection studies, WT but not MUT TR-beta antagonized induction of this promoter by LXR-alpha. Electromobility shift analysis revealed that LXR/RXR heterodimers bound to the DR+4 element in the presence of MUT but not WT TR-beta. A mechanism for cross-talk, and potential antagonism, between TR-beta and LXR-alpha is proposed.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
We have analyzed the role of the thyroid hormone receptors (TRs) in epidermal homeostasis. Reduced keratinocyte proliferation is found in interfollicular epidermis of mice lacking the thyroid hormone binding isoforms TRα1 and TRβ (KO mice). Similar results were obtained in hypothyroid animals, showing the important role of the liganded TRs in epidermal proliferation. In addition, KO and hypothyroid animals display decreased hyperplasia in response to 12-O-tetradecanolyphorbol-13-acetate. Both receptor isoforms play overlapping functional roles in the skin because mice lacking individually TRα1 or TRβ also present a proliferative defect but not as marked as that found in double KO mice. Defective proliferation in KO mice is associated with reduction of cyclin D1 expression and up-regulation of the cyclin-dependent kinase inhibitors p19 and p27. Paradoxically, ERK and AKT activity and expression of downstream targets, such as AP-1 components, are increased in KO mice. Increased p65/NF-κB and STAT3 phosphorylation and, as a consequence, augmented expression of chemokines and proinflammatory cytokines is also found in these animals. These results show that thyroid hormones and their receptors are important mediators of skin proliferation and demonstrate that TRs act as endogenous inhibitors of skin inflammation, most likely due to interference with AP-1, NF-κB, and STAT3 activation.  相似文献   

11.
12.
13.
Microtubules are made from polymers of alpha/beta dimers. We have observed in rat liver that, on the first day after birth, alpha-subunit is relatively high and beta-subunit low with respect to adult values. In the hypothyroid neonate, both subunits were found to be low, therefore indicating that thyroid hormone (TH) regulates these developmental changes. TH was also found to activate tubulin expression in adult liver, especially beta-subunit. To investigate the role of TH receptors (TRs) in tubulin expression, we analyzed mice lacking TRalpha or TRbeta compared with the wild type in both normal and TH-deprived adult animals. The results suggest that, in vivo, beta-tubulin protein expression in the liver is primarily under TRbeta positive control. In euthyroid mice lacking TRbeta, beta-tubulin expression was low. However, in the corresponding hypothyroid animals, it was found increased, therefore suggesting that the unliganded TRalpha might also upregulate beta-tubulin expression. Accordingly, TH administration to hypothyroid TRbeta-deprived mice reduced their high beta-tubulin expression. In parallel, the relatively high messenger level observed with these hypothyroid animals was reduced to the euthyroid level after T(3) treatment. The microtubular network of the mutant livers appeared, by immunofluorescence confocal microscopy, generally disorganized and drastically reduced in beta-tubulin in mice lacking TRbeta. In conclusion, our results indicate that beta-tubulin is critically controlled by TRbeta in the liver and that both TRs are probably needed to maintain the microtubular network organization of the liver.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号