共查询到20条相似文献,搜索用时 0 毫秒
1.
Michael Lynch Jeff Blanchard David Houle Travis Kibota Stewart Schultz Larissa Vassilieva John Willis 《Evolution; international journal of organic evolution》1999,53(3):645-663
Mildly deleterious mutation has been invoked as a leading explanation for a diverse array of observations in evolutionary genetics and molecular evolution and is thought to be a significant risk of extinction for small populations. However, much of the empirical evidence for the deleterious-mutation process derives from studies of Drosophila melanogaster, some of which have been called into question. We review a broad array of data that collectively support the hypothesis that deleterious mutations arise in flies at rate of about one per individual per generation, with the average mutation decreasing fitness by about only 2% in the heterozygous state. Empirical evidence from microbes, plants, and several other animal species provide further support for the idea that most mutations have only mildly deleterious effects on fitness, and several other species appear to have genomic mutation rates that are of the order of magnitude observed in Drosophila. However, there is mounting evidence that some organisms have genomic deleterious mutation rates that are substantially lower than one per individual per generation. These lower rates may be at least partially reconciled with the Drosophila data by taking into consideration the number of germline cell divisions per generation. To fully resolve the existing controversy over the properties of spontaneous mutations, a number of issues need to be clarified. These include the form of the distribution of mutational effects and the extent to which this is modified by the environmental and genetic background and the contribution of basic biological features such as generation length and genome size to interspecific differences in the genomic mutation rate. Once such information is available, it should be possible to make a refined statement about the long-term impact of mutation on the genetic integrity of human populations subject to relaxed selection resulting from modern medical procedures. 相似文献
2.
Xiao‐Lin Chu Da‐Yong Zhang Angus Buckling Quan‐Guo Zhang 《Journal of evolutionary biology》2020,33(8):1020-1027
Temperature determines the rates of all biochemical and biophysical processes, and is also believed to be a key driver of macroevolutionary patterns. It is suggested that physiological constraints at low temperatures may diminish the fitness advantages of otherwise beneficial mutations; by contrast, relatively high, benign, temperatures allow beneficial mutations to efficiently show their phenotypic effects. To experimentally test this “mutational effects” mechanism, we examined the fitness effects of mutations across a temperature gradient using bacterial genotypes from the early stage of a mutation accumulation experiment with Escherichia coli. While the incidence of beneficial mutations did not significantly change across environmental temperatures, the number of mutations that conferred strong beneficial fitness effects was greater at higher temperatures. The results therefore support the hypothesis that warmer temperatures increase the chance and magnitude of positive selection, with implications for explaining the geographic patterns in evolutionary rates and understanding contemporary evolution under global warming. 相似文献
3.
Jesús Fernndez Carlos Lpez-Fanjul 《Evolution; international journal of organic evolution》1997,51(3):856-864
Spontaneous mutations were allowed to accumulate for 104–161 generations in 113–176 inbred lines, independently maintained by a single brother-sister mating per generation, all of them derived from a completely homozygous population of Drosophila melanogaster. In each of two to three consecutive generations, all lines were scored for fecundity, egg-to-pupa and pupa-to-adult viabilities, both in the standard laboratory culture medium (ST) and in three harsh media differing from the former by a single factor: higher temperature (HT), higher NaCl concentration (HSC), or a much reduced concentration of nutrients (D). Relative to the standard medium, productivity (fecundity × viability) decreased by 25% (HT), 66% (HSC), and 80% (D). In each medium, mutational variances of those traits and mutational covariances between all possible pairs were calculated from the between-line divergence (codivergence). Mutational correlations between character states in different media were also obtained. Because we used inbred lines, those estimates were mainly due to the accumulation of mildly detrimental mutations, deleterious mutations of large effect being underrepresented. For all traits, mutational heritabilities ranged from 1.41 × 10–4 to 11.24 × 10–4, and did not increase with intensified environmental harshness. Mutational correlations between character states in different media were usually not large (average absolute value 0.31), reflecting a high degree of environmental specificity of the mutations involved. In our results, mutations quasi-neutral in ST conditions and mildly detrimental in more stressful media were not, as a class, important. Mutational correlations between fecundity and egg-to-pupa viability were small and positive in all media. Those involving pupa-to-adult viability were positive in HT, nonsignificant in HSC, and negative in ST and D, showing how the genetic covariance structure of quantitative traits in populations may change in variable environments. 相似文献
4.
5.
Susanne A. Kraemer Katharina B. Böndel Robert W. Ness Peter D. Keightley Nick Colegrave 《Evolution; international journal of organic evolution》2017,71(12):2918-2929
Although all genetic variation ultimately stems from mutations, their properties are difficult to study directly. Here, we used multiple mutation accumulation (MA) lines derived from five genetic backgrounds of the green algae Chlamydomonas reinhardtii that have been previously subjected to whole genome sequencing to investigate the relationship between the number of spontaneous mutations and change in fitness from a nonevolved ancestor. MA lines were on average less fit than their ancestors and we detected a significantly negative correlation between the change in fitness and the total number of accumulated mutations in the genome. Likewise, the number of mutations located within coding regions significantly and negatively impacted MA line fitness. We used the fitness data to parameterize a maximum likelihood model to estimate discrete categories of mutational effects, and found that models containing one to two mutational effect categories (one neutral and one deleterious category) fitted the data best. However, the best‐fitting mutational effects models were highly dependent on the genetic background of the ancestral strain. 相似文献
6.
The relative effects of purging of the genetic load versus thefixation of deleterious alleles, under inbreeding, will influencea population's probability of extinction. The relative contributionof these two phenomena is expected to depend upon the rate ofinbreeding. A further complication is due to the fact that a purgingof the genetic load in one environment does not necessarily implya purging of the genetic load in other environments. To addressthese two issues, we compare fitness and genetic load in populationsexperiencing similar levels of inbreeding, but occurring as either ashort-term bottleneck or as a consequence of long-term reducedpopulation size, over a range of environments. Inbred populationshave consistently lower fitness than outbred populations acrossall environments tested. However, the bottlenecked populationssuffer less inbreeding depression for a given level of inbreeding,whether or not challenged by novel environments, than populationskept at a constant small size. The results of this study demonstratethat populations initiated from a small number of founders are ableto recover fitness and survive novel environmental challenges,provided that habitat is available for rapid population growth. 相似文献
7.
Juha Meril 《Evolution; international journal of organic evolution》1997,51(2):526-536
Heritability of body size in two experimentally created environments, representing good and poor feeding conditions, respectively, was estimated using cross-fostered collared flycatcher Ficedula albicollis nestlings. Young raised under poor feeding conditions attained smaller body size (tarsus length) than their full-sibs raised under good feeding conditions. Parent-offspring regressions revealed lower heritability (h2) of body size under poor than under good feeding conditions. Hence, as the same set of parents were used in the estimation of h2 in both environments, this suggests environment-dependent change in additive genetic component of variance (VA), or that the genetic correlation between parental and poor offspring environment was less than that between parental and good offspring environment. However, full-sib analyses failed to find evidence for genotype-environment interactions, although the power of these tests might have been low. Full-sib heritabilities in both environments tended to be higher than estimates from parent-offspring regressions, indicating that prehatching or early posthatching common environment/maternal effects might have inflated full-sib estimates of VA. The effect of sibling competition on estimates of VA was probably small as the nestling size-hierarchy at day 2 posthatch was not generally correlated with size-hierarchy at fledging. Furthermore, there was no correlation between maternal body condition during the incubation and final size of offspring, indicating that direct maternal effects related to nutritional status were small. A review of earlier quantitative genetic studies of body size variation in birds revealed that in eight of nine cases, heritability of body size was lower in poor than in good environmental conditions. The main implication of this relationship will be a decreased evolutionary response to selection under poor environmental conditions. On the other hand, this will retard the loss of genetic variation by reducing the accuracy of selection and might help explain the moderate to high heritabilities of body-size traits under good environmental conditions. 相似文献
8.
Mutation rate may be condition dependent, whereby individuals in poor condition, perhaps from high mutation load, have higher mutation rates than individuals in good condition. Agrawal (J. Evol. Biol.15, 2002, 1004) explored the basic properties of fitness-dependent mutation rate (FDMR) in infinite populations and reported some heuristic results for finite populations. The key parameter governing how infinite populations evolve under FDMR is the curvature (k) of the relationship between fitness and mutation rate. We extend Agrawal's analysis to finite populations and consider dominance and epistasis. In finite populations, the probability of long-term existence depends on k. In sexual populations, positive curvature leads to low equilibrium mutation rate, whereas negative curvature results in high mutation rate. In asexual populations, negative curvature results in rapid extinction via 'mutational meltdown', whereas positive curvature sometimes allows persistence. We speculate that fitness-dependent mutation rate may provide the conditions for genetic architecture to diverge between sexual and asexual taxa. 相似文献
9.
10.
Eugenio Lpez-Cortegano Rory J Craig Jobran Chebib Toby Samuels Andrew D Morgan Susanne A Kraemer Katharina B Bndel Rob W Ness Nick Colegrave Peter D Keightley 《Molecular biology and evolution》2021,38(9):3709
De novo mutations are central for evolution, since they provide the raw material for natural selection by regenerating genetic variation. However, studying de novo mutations is challenging and is generally restricted to model species, so we have a limited understanding of the evolution of the mutation rate and spectrum between closely related species. Here, we present a mutation accumulation (MA) experiment to study de novo mutation in the unicellular green alga Chlamydomonas incerta and perform comparative analyses with its closest known relative, Chlamydomonas reinhardtii. Using whole-genome sequencing data, we estimate that the median single nucleotide mutation (SNM) rate in C. incerta is μ = 7.6 × 10−10, and is highly variable between MA lines, ranging from μ = 0.35 × 10−10 to μ = 131.7 × 10−10. The SNM rate is strongly positively correlated with the mutation rate for insertions and deletions between lines (r > 0.97). We infer that the genomic factors associated with variation in the mutation rate are similar to those in C. reinhardtii, allowing for cross-prediction between species. Among these genomic factors, sequence context and complexity are more important than GC content. With the exception of a remarkably high C→T bias, the SNM spectrum differs markedly between the two Chlamydomonas species. Our results suggest that similar genomic and biological characteristics may result in a similar mutation rate in the two species, whereas the SNM spectrum has more freedom to diverge. 相似文献
11.
Determining the mechanisms that promote the evolution of diversity is a central problem in evolutionary biology. Previous studies have demonstrated that diversification occurs in complex environments and that genotypes specialized on alternative resources can be maintained over short time scales. Here, we describe a selection experiment that has tracked the dynamics of adaptive diversification within selection lines of the asexual bacteria Pseudomonas fluorescens over about 900 generations. We cultured experimental populations from the same two isogenic ancestral strains in simple, single-substrate environments or in complex, four-substrate environments. Following selection we assayed the growth of genotypes from each population on each substrate individually. We estimated mutational heritability, Vm/VE, as 1 x 10(-3) per generation in simple environments and 3 x 10(-3) per generation in complex environments. These values are roughly consistent with estimates reported in other systems. Populations selected in complex environments evolved into genetically diverse communities. Genotypes exhibited greater metabolic differentiation from other genotypes in their own population than to genotypes evolving in other populations, presumably as a result of resource competition. In populations selected in simple environments, little genetic diversity evolved, and genotypes shared very similar phenotypes. Our findings suggest that ecological opportunity provided by environmental complexity plays a major role in the evolution and maintenance of diversity. 相似文献
12.
James D. Fry 《Evolution; international journal of organic evolution》1992,46(2):540-550
The mixed-model factorial analysis of variance has been used in many recent studies in evolutionary quantitative genetics. Two competing formulations of the mixed-model ANOVA are commonly used, the “Scheffe” model and the “SAS” model; these models differ in both their assumptions and in the way in which variance components due to the main effect of random factors are defined. The biological meanings of the two variance component definitions have often been unappreciated, however. A full understanding of these meanings leads to the conclusion that the mixed-model ANOVA could have been used to much greater effect by many recent authors. The variance component due to the random main effect under the two-way SAS model is the covariance in true means associated with a level of the random factor (e.g., families) across levels of the fixed factor (e.g., environments). Therefore the SAS model has a natural application for estimating the genetic correlation between a character expressed in different environments and testing whether it differs from zero. The variance component due to the random main effect under the two-way Scheffe model is the variance in marginal means (i.e., means over levels of the fixed factor) among levels of the random factor. Therefore the Scheffe model has a natural application for estimating genetic variances and heritabilities in populations using a defined mixture of environments. Procedures and assumptions necessary for these applications of the models are discussed. While exact significance tests under the SAS model require balanced data and the assumptions that family effects are normally distributed with equal variances in the different environments, the model can be useful even when these conditions are not met (e.g., for providing an unbiased estimate of the across-environment genetic covariance). Contrary to statements in a recent paper, exact significance tests regarding the variance in marginal means as well as unbiased estimates can be readily obtained from unbalanced designs with no restrictive assumptions about the distributions or variance-covariance structure of family effects. 相似文献
13.
14.
Andrew D. Morgan Rob W. Ness Peter D. Keightley Nick Colegrave 《Evolution; international journal of organic evolution》2014,68(9):2589-2602
Estimates of mutational parameters, such as the average fitness effect of a new mutation and the rate at which new genetic variation for fitness is created by mutation, are important for the understanding of many biological processes. However, the causes of interspecific variation in mutational parameters and the extent to which they vary within species remain largely unknown. We maintained multiple strains of the unicellular eukaryote Chlamydomonas reinhardtii, for approximately 1000 generations under relaxed selection by transferring a single cell every ~10 generations. Mean fitness of the lines tended to decline with generations of mutation accumulation whereas mutational variance increased. We did not find any evidence for differences among strains in any of the mutational parameters estimated. The overall change in mean fitness per cell division and rate of input of mutational variance per cell division were more similar to values observed in multicellular organisms than to those in other single‐celled microbes. However, after taking into account differences in genome size among species, estimates from multicellular organisms and microbes, including our new estimates from C. reinhardtii, become substantially more similar. Thus, we suggest that variation in genome size is an important determinant of interspecific variation in mutational parameters. 相似文献
15.
Avi Bar-Massada Rafi Kent Yohay Carmel 《Proceedings. Biological sciences / The Royal Society》2014,281(1783)
The continuum hypothesis has been proposed as a means to reconcile the contradiction between the niche and neutral theories. While past research has shown that species richness affects the location of communities along the niche–neutrality continuum, there may be extrinsic forces at play as well. We used a spatially explicit continuum model to quantify the effects of environmental heterogeneity, comprising abundance distribution and spatial configuration of resources, on the degree of community neutrality. We found that both components of heterogeneity affect the degree of community neutrality and that species'' dispersal characteristics affect the neutrality–heterogeneity relationship. Narrower resource abundance distributions decrease neutrality, while spatial configuration, which is manifested by spatial aggregation of resources, decreases neutrality at higher aggregation levels. In general, the degree of community neutrality was affected by complex interactions among spatial configuration of resources, their abundance distributions and the dispersal characteristics of species in the community. Our results highlight the important yet overlooked role of the environment in dictating the location of communities along the hypothesized niche–neutrality continuum. 相似文献
16.
A significant part of eukaryotic noncoding DNA is viewed as the passive result of mutational processes, such as the proliferation of mobile elements. However, sequences lacking an immediate utility can nonetheless play a major role in the long-term evolvability of a lineage, for instance by promoting genomic rearrangements. They could thus be subject to an indirect selection. Yet, such a long-term effect is difficult to isolate either in vivo or in vitro. Here, by performing in silico experimental evolution, we demonstrate that, under low mutation rates, the indirect selection of variability promotes the accumulation of noncoding sequences: Even in the absence of self-replicating elements and mutational bias, noncoding sequences constituted an important fraction of the evolved genome because the indirectly selected genomes were those that were variable enough to discover beneficial mutations. On the other hand, high mutation rates lead to compact genomes, much like the viral ones, although no selective cost of genome size was applied: The indirectly selected genomes were those that were small enough for the genetic information to be reliably transmitted. Thus, the spontaneous evolution of the amount of noncoding DNA strongly depends on the mutation rate. Our results suggest the existence of an additional pressure on the amount of noncoding DNA, namely the indirect selection of an appropriate trade-off between the fidelity of the transmission of the genetic information and the exploration of the mutational neighborhood. Interestingly, this trade-off resulted robustly in the accumulation of noncoding DNA so that the best individual leaves one offspring without mutation (or only neutral ones) per generation. 相似文献
17.
Bengtsson BO 《Genetics》2012,191(4):1393-1395
Some genetic phenomena originate as mutations that are initially advantageous but decline in fitness until they become distinctly deleterious. Here I give the condition for a mutation-selection balance to form and describe some of the properties of the resulting equilibrium population. A characterization is also given of the fixation probabilities for such mutations. 相似文献
18.
19.
Reed DH Lowe EH Briscoe DA Frankham R 《Evolution; international journal of organic evolution》2003,57(8):1822-1828
Abstract. The ability of populations to undergo adaptive evolution depends on the presence of genetic variation for ecologically important traits. The maintenance of genetic variation may be influenced by many variables, particularly long-term effective population size and the strength and form of selection. The roles of these factors are controversial and there is very little information on their impacts for quantitative characters. The aims of this study were to determine the impacts of population size and variable versus constant prior environmental conditions on fitness and the magnitude of response to selection. Outbred and inbred populations of Drosophila melanogaster were maintained under benign, constant stressful, and variably stressful conditions for seven generations, and then forced to adapt to a novel stress for seven generations. Fitness and adaptability were assayed in each replicate population. Our findings are that: (1) populations inbred in a variable environment were more adaptable than those inbred in a constant environment; (2) populations adapted to a prior stressful environment had greater fitness when reared in a novel stress than those less adapted to stress; (3) inbred populations had lower fitness and were less adaptable than the outbred population they were derived from; and (4) strong lineage effects were detectable across environments in the inbred populations. 相似文献
20.
Donald A. Stratton Cynthia C. Bennington 《Evolution; international journal of organic evolution》1998,52(3):678-691
Because interactions among plants are spatially local, the scale of environmental heterogeneity can have large effects on evolutionary dynamics. However, very little is known about the spatial patterns of variation in fitness and the relative magnitude of spatial and temporal variation in selection. Replicates of 12 genotypes of Erigeron annuus (Asteraceae) were planted in 288 locations within a field, separated by distances of 0.1 to 30.0 m, and replicated in two years. In a given year, most spatial variation in relative fitness (genotype-environment [G × E] interactions for fitness) occurred over distances of only 50 cm. Year effects were as large or larger than the spatial variation in fitness; in particular there was a large, three-way, genotype-year-environment interaction at the smallest spatial scale. The genetic correlation of fitness across years at a given location was near zero, 0.03. Thus, the relative fitness of genotypes is spatially unpredictable and a map of the selective environment has constantly shifting locations of peaks and valleys. Including measurements of soil nutrients as covariates in the analysis removed most of the spatial G × E interaction. Vegetation and microtopography had no effect on the G × E terms, suggesting that differential response to soil nutrients is the cause of spatial variation in fitness. However, the slope of response to NH4 and P04 was negative; therefore the soil nutrients are probably just indicators of other, unknown, environmental factors. We explored via simulation the evolutionary consequences of spatial and temporal variation in fitness and showed that, for this system, the spatial scale of variation was too fine grained (by a factor of 3 to 5) to be a powerful force maintaining genetic variation in the population. The inclusion of both spatial and temporal variation in fitness actually reduced the coexistence of genotypes compared to pure spatial models. Thus the presence of spatial or temporal variation in selection does not guarantee that it is an effective evolutionary force maintaining diversity. Instead the pattern of selection favors generalist genotypes. 相似文献