首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Present study showed the responses of pea seedlings to exogenous indole acetic acid (IAA; 10 and 100 μM) application under manganese (Mn; 50, 100 and 250 μM) toxicity. Manganese and 100 μM IAA alone as well as in combination decreased growth of pea seedlings compared to control. Moreover, some parameters of oxidative stress—hydrogen peroxide (H2O2) and malondialdehyde (MDA) were also increased by single and combined treatments of Mn and 100 μM IAA compared to control. In contrast, addition of 10 μM IAA together with Mn, alleviated Mn toxicity symptoms and promoted growth led to the decrease in H2O2 and MDA levels compared to Mn treatments alone. Under single and combined treatments of Mn and 100 μM IAA, catalase activity decreased while superoxide dismutase and ascorbate peroxidase activities increased and glutathione reductase and dehydroascorbate reductase exhibited differential responses. However, addition of 10 μM IAA together with Mn, increased activities of studied enzymatic antioxidants. Root and shoot reduced ascorbate (AA) and reduced glutathione (GSH) and, their reduced/oxidized ratios decreased while dehydroascorbate (DHA) and oxidized glutathione (GSSG) contents increased compared to control following single and combined treatments of Mn and 100 μM IAA. However, supply of 10 μM IAA together with Mn, increased AA and GSH, and their reduced/oxidized ratios in root and shoot compared to Mn treatments alone. This study thus suggests that 10 μM of IAA was able to increase Mn tolerance in pea seedlings under Mn toxicity while opposite was noticed for 100 μM IAA.  相似文献   

2.
Cell intermediary metabolism and energy production succeeds by means of mitochondria, whose activity is in relation to transmembrane potential and/or free radical production. Adenosine triphosphate (ATP)-dependent potassium channels (KATP) in several cell types have shown to couple cell metabolism to membrane potential and ATP production. In this study, we explore whether oxygen consumption in isolated skeletal-muscle mitochondria differs in the presence of distinct respiration substrates and whether these changes are affected by KATP-channel inhibitors such as glibenclamide, 5-Hydroxydecanoate (5-HD), and KATP channel activators (pinacidil and diazoxide). Results demonstrate a concentration-dependent diminution of respiration rate by glibenclamide (0.5–20 μM), pinacidil (1–50 μM), and diazoxide (50–200 μM), but no significant differences were found when the selective mitochondrial KATP-channel inhibitor (5-HD, 10–500 μM) was used. These results suggest that these KATP-channel agonists and antagonists exert an effect on mitochondrial respiration and that they could be acting on mito-KATP or other respiratory-chain components.  相似文献   

3.
Effects of exogenous gibberellic acid (GA; 10 and 100 μM) application on growth, protein and nitrogen contents, ammonium (NH4 +) content, enzymes of nitrogen assimilation and antioxidant system in pea seedlings were investigated under chromium (VI) phytotoxicity (Cr VI; 50, 100 and 250 μM). Exposure of pea seedlings to Cr and 100 μM GA resulted in decreased seed germination, fresh and dry weight and length of root and shoot, and protein and nitrogen contents compared to control. Compared to control, Cr and 100 μM GA led to the significant alteration in nitrogen assimilation in pea. These treatments decreased root and shoot nitrate reductase (NR), glutamine synthetase (GS) and glutamine 2-oxoglutarate aminotransferase (GOGAT) activities (except 50 μM Cr alone for GOGAT) while glutamate dehydrogenase (GDH) activity and NH4 + content increased. Compared to control, the root and shoot activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) increased (except APX activity at 250 μM Cr + 100 μM GA) while catalase (CAT), glutathione reductase (GR) and dehydroascorbate reductase (DHAR) activities were decreased (except GR at 100 μM GA alone) following exposure of Cr and 100 μM GA. Total ascorbate and total glutathione in root and shoot decreased by the treatments of Cr and 100 μM GA while their levels were increased by the application of 10 μM GA compared to Cr treatments alone. It has been reported that application of 10 μM GA together with Cr alleviated inhibited levels of growth, nitrogen assimilation and antioxidant system compared to Cr treatments alone. This study showed that application of 10 μM GA counteracts some of the adverse effects of Cr phytotoxicity with the increased levels of antioxidants and sustained activities of enzymes of nitrogen assimilation; however, 100 μM GA showed apparently reverse effect under Cr phytotoxicity.  相似文献   

4.
The present study was undertaken to test the influence of exogenously applied jasmonic acid (JA) at concentrations of 0.01–100 μM upon the growth and metabolism of the aquatic plant Wolffia arrhiza (Lemnaceae). JA acted in a concentration-dependent manner. JA at 0.1 μM stimulated plant growth and accumulation of cellular components (proteins, monosaccharides, chlorophylls, phaeophytins, and carotenoids). Treatment with JA at 0.1 μM enhanced W. arrhiza viability by the induction of biomass production and increased the level of photosynthetic pigments, monosaccharides, and soluble proteins. Moreover, JA at 0.1 μM activated the enzymatic (catalase, ascorbate peroxidase, NADH peroxidase) and nonenzymatic antioxidant (ascorbate, glutathione) system in W. arrhiza and, therefore, suppressed lipid peroxidation. In contrast, decreases in fresh weight, major photosynthetic pigments, monosaccharides, and soluble protein content were observed in W. arrhiza exposed to 100 μM JA. JA applied at 100 μM also stimulated the formation of lipid peroxides which are responsible for membrane damage. In the presence of 100 μM JA, antioxidant enzyme (catalase, ascorbate peroxidase, NADH peroxidase) activity and ascorbate as well as glutathione content were inhibited. The data support the hypothesis that JA plays an important role in W. arrhiza growth and metabolism, regulating oxidative status by direct influence on the enzymatic as well as nonenzymatic antioxidant machinery.  相似文献   

5.
The present study investigated the effect of Arsenic (As; 5, 10, 50 μM) on protein and sugar metabolism vis-à-vis oxidative damage during early germination process and radicle emergence (at 12, 24 and 48 h stage) in Phaseolus aureus. As-exposure (50 μM) significantly enhanced protein content (by 40–60%), whereas carbohydrate content declined (by 31–44%) over that in the control. It was associated with a decline in the activities of proteases (47–53%), and increase in the activities of α- and β-amylases, starch phosphorylases, and acid invertases by 3.0, 2.6, 4.8, and 1.7 times after 48 h exposure to 50 μM As. The alteration in protein and carbohydrate metabolic machinery was also accompanied by As-induced reactive oxygen species (ROS)-mediated oxidative damage. As treatment enhanced malondialdehyde and hydrogen peroxide content by 46–252% and 23–216%, and hydroxyl and superoxide ion generation by 15–104% and 17–278%, respectively. As-induced lipid peroxidation and membrane disruption was confirmed by enhanced electrolyte leakage (by 49%) and reduced cell viability (by 43%). Furthermore, in response to 50 μM As, the activities of superoxide dismutases, catalases, ascorbate peroxidases, guaiacol peroxidases, and glutathione reductases increased by 77%, 70%, 116%, 43% and 120%, respectively, in radicles at 48 h stage over that in the control. The study concludes that As inhibits radicle emergence and elongation in germinating P. aureus seeds by altering biochemical processes related to sugar metabolism and inducing an ROS-mediated oxidative damage.  相似文献   

6.
Effect of two Ni concentrations (10 and 200 μM) on growth, Ni accumulation, chlorophyll and proline contents, relative water content (RWC) as well as the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and glutathione S-transferase (GST) were studied in shoots of wheat plants. Treatments caused a considerable accumulation of Ni in the shoots. However, exposure of plants to 10 μM Ni did not lead to significant alterations in shoot growth except for a slight increase in fresh mass. The other parameters studied were not affected by treatment of plants with 10 μM Ni. In contrast, 200 μM Ni caused inhibition of shoot growth, a decline in RWC and chlorophyll content, accumulation of proline and occurrence of visible symptoms of Ni toxicity. The activities of SOD and CAT decreased in response to 200 μM Ni. Conversely, several-fold enhancements of POD and GST activities were observed following the 3rd day of 200 μM Ni treatment.  相似文献   

7.
Ali MB  Hahn EJ  Paek KY 《Plant cell reports》2006,25(10):1122-1132
Roots of Panax ginseng exposed to various concentrations of Cu (0.0, 5, 10.0, 25.0, and 50.0 μM) accumulated high amounts of Cu in a concentration-dependent and duration-dependent manner. Roots treated with 50 μM Cu resulted in 52% and 89% growth inhibition after 20 and 40 days, respectively. Saponin synthesis was stimulated at a Cu concentration between 5 and 25 μM but decreased at 50 μM Cu. Malondialdehyde content (MDA), lipoxygenase activity (LOX), superoxide ion (O2 •−) accumulation, and H2O2 content at 5 and 10 μM Cu-treated roots were not increased but strongly increased at 50 μM Cu resulting in the oxidation of ascorbate (ASC) and glutathione (GSH) to dehydroascorbate (DHA) and glutathione disulfide (GSSG), respectively indicating a clear oxidative stress. Seven well-resolved bands of superoxide dismutase (SOD) were detected in the gel and an increase in SOD activity seemed to be mainly due to the induction of Fe-SOD 3. Five to 10 μM Cu slightly induced activity of ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR), guaiacol peroxidase (G-POD) but inhibited monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR) enzyme activities. No changes in catalase (CAT) activity and in activity gel were found up to 25 μM Cu, but both G-POD and CAT activities were inhibited at 50 μM Cu. Glutathione metabolism enzymes such as γ-glutamylcysteine synthetase (γ-GCS), glutathione-S-transferase (GST), and glutathione peroxidase activities (GPx) were activated at 5 and 10 μM Cu but were strongly inhibited at 50 μM Cu due to the Cu accumulation in root tissues. The strong depletion of GSH at 50 μM Cu was associated to the strong induction of γ-glutamyltranspeptidase (γ-GGT) activity. These results indicate that plant could grow under Cu stress (5–25 μM) by modulating the antioxidant defense mechanism for combating Cu induced oxidative stress.  相似文献   

8.
Previous studies have shown that the in ovo injection of equol can markedly improve the water-holding capacity of muscles of broilers chickens at 7 wk of age through promotion of the antioxidant status. We aimed to investigate directly the antioxidant effects of equol on muscle cells in broilers. Muscle cells were separated from leg muscle of embryos on the 11th day of incubation and treated with equol and H2O2, either alone or together. Cells were pretreated with medium containing 1, 10, or 100 μM equol for 1 h prior to the addition of 1 mM H2O2 for a further 1 h. Photomicrographs of cells were obtained. Cell viability, malondialdehyde (MDA) content, and L-lactate dehydrogenase (LDH) activity in the cell supernatant, as well as intracellular total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activities were determined. Treatment with 1 mM H2O2 caused serious damage to cells, indicated by comets with no clear head region but a very apparent tail of DNA fragments. Pretreatment with low (1 μM) but not high concentrations of equol (10 μM) inhibited cell damage, while 100 μM equol caused more serious damage than H2O2 alone. Pretreatment with 1 μM equol had no effect on cell viability, while pretreatment with 10 and 100 μM equol significantly decreased cell viability in a dose-dependent manner. Compared with H2O2 alone, pretreatment with low-dosage equol markedly decreased LDH activity and MDA production in the supernatant, significantly increased intracellular T-SOD activity (P < 0.05) and tended to increase intracellular GSH-Px activity (0.05 < P < 0.1). Pretreatment with high-dosage equol (10 and 100 μM) significantly enhanced LDH activity, but had no effect on MDA content, T-SOD or GSH-Px activity induced by H2O2, except for an obvious increase in GSH-Px activity caused by 10 μM equol. These results indicate that equol at low dosage can prevent skeletal muscle cell damage induced by H2O2, while pretreatment with high-dosage equol shows a synergistic effect with H2O2 in inducing cell damage.  相似文献   

9.
Tubers can be initiated and developed in vitro from nodal cuttings of yam (Dioscorea cayenensis-D. rotundata complex). The effect of exogenous jasmonic acid, alone or in combination with putrescine, on these processes was investigated in relationship to endogenous jasmonic acid and polyamine levels. Application of exogenous jasmonic acid at various concentrations positively affected microtuber formation and growth from yam nodal cuttings. In control conditions, 3 weeks were needed to obtain 100% of tuberisation. Jasmonic acid at low level (0.1 μM) accelerated tuber formation (46% after 1 week) as did putrescine (10 μM). But endogenous levels of jasmonic acid were not significantly affected by its exogenous presence in the medium. Jasmonic acid also interacted with other growth regulators as polyamines, but the decrease in time necessary to observe tuber formation could not be correlated with endogenous modifications of PUT content. The presence of jasmonic acid (0.1–1 μM) as PUT (1 μM) induced also an increase of tuber length and weight. The combination of jasmonic acid (0.1 μM) and putrescine (1 μM) had no positive effect on tuber formation (precocity) but had an additive effect on further growth (length and weight). In the future, these results could help the optimising in vitro conditions for mass production of larger yam microtubers.  相似文献   

10.
In the present study, the effects of dexamethasone on cadmium-induced toxicity were evaluated in isolated rat hepatocytes. Hepatocytes were cultured for 24 h in William’s E medium containing fetal calf serum (10%), insulin (0.1 IU/ml), and glucagon (0.01 μM) in the absence or presence of 0.1 μM dexamethasone. Cadmium chloride, 5 or 10 μM, was added to the medium and the toxicity was evaluated for up to 48 h after treatment. Lactate dehydrogenase (LDH) release, the reduced and oxidized glutathione ratio (GSH/GSSG), protein-SH groups, and lipid peroxidation levels were evaluated. Cadmium induced a dose- and time-dependent LDH release in control hepatocytes at 24 h (Cd 10 μM 42%) while hepatocytes pretreated with dexamethasone showed lower necrosis (Cd 10 μM 12% at 24 h). GSH/GSSH ratio and protein-SH groups were higher while lipid peroxidation was lower in dexamethasone-treated hepatocytes as compared with untreated cells. In conclusion, cadmium toxicity was associated with an increase in intracellular oxidative stress responsible for accelerated cell death. The use of dexamethasone prevented cadmium damage, suggesting that the cytoprotective action of this hormone is related to its effect in preventing changes in thiols such as glutathione and protein-SH groups.  相似文献   

11.
Cell cultures of Cayratia trifolia (Vitaceae), a tropical lianas, were maintained in Murashige and Skoog’s medium containing 0.25 mg l−1 NAA, 0.2 mg l−1 kinetin and casein hydrolysate 250 mg l−1. Cell suspension cultures of C. trifolia accumulate stilbenes (piceid, resveratrol, viniferin, ampelopsin), which on elicitation by any of 500 μM salicylic acid, 100 μM methyl jasmonate, 500 μM ethrel and 500 mg l−1 yeast extract, added on the 7th day, were enhanced by 3- to 6-fold (5–11 mg l−1) by the 15th day.  相似文献   

12.
High levels of homocysteine promote cell damage mainly through induction of oxidative stress, endoplasmic reticulum (ER) stress, and activation of pro-inflammatory factors. The effects of homocysteine were here examined in the continuously dividing neuroblastoma cell line Neuro2a. Cell treatment with homocysteine (100–500 μM) for 4 h increased ROS production while reducing cell viability in a dose-dependent manner. Cell exposure to 250 μM homocysteine was able to induce transglutaminase 2 up-regulation and increased in situ transglutaminase activity. These effects were prevented by the incubation with the transglutaminase activity inhibitor cystamine. Homocysteine also induced NF-κB activation that seemed associated with transglutaminase 2 up-regulation since the specific NF-κB inhibition by SN50 was able to reduce transglutaminase expression and activity levels. In the light of these observations, it may be postulated that TG2 up-regulation is involved in cell response to homocysteine-induced stress, in which NF-κB activation plays also a pivotal role.  相似文献   

13.
14.
Copper and zinc act as a cofactor of over 300 mammalian proteins. Both have same electronic configuration therefore they are antagonist at higher individual concentration. The present study was designed with the aim to investigate the mechanisms pertaining to toxic effects of copper on human peripheral blood mononuclear cells (PBMCs) and to evaluate the cytoprotective effect of zinc on copper-induced cytotoxicity. The copper uptake into PBMCs was progressively increased with increasing concentration of metal in the growth medium. However, no significant effect on copper uptake was observed in the presence of zinc. Cell proliferation rate was decreased with increasing copper concentration. Interestingly, the proliferation rate of zinc treated PBMCs remained nearly the same as that of control cells. LD50 of copper (115 μM) was increased six times (710 μM) in presence of zinc for PBMCs. At higher concentrations of copper (> 100 μM) decrease level of GSH was noticed. Increased levels of metallothionein in PBMCs were observed in response to zinc. DNA fragmentation studies also showed that copper produced DNA fragmentation at LD50 (115 μM). Subsequently, zinc showed protection against DNA fragmentation caused by copper. Cell structure of PBMCs at LD50 (115 μM copper) showed membrane bound cystic spaces and mitochondria having disrupted cristae and few myelin figures. In presence of zinc at LD50 of copper (115 μM) cells showed improvement in mitochondrial structure and membrane bound cystic spaces. Taken together, the results of our study demonstrates that zinc play an important role in prevention of copper toxicity in peripheral blood mononuclear cells.  相似文献   

15.
The cells of the red microalga Porphyridium sp. are encapsulated within a complex sulphated polysaccharide, comprising cell-wall-bound and soluble fractions. The current study investigated the involvement of the Golgi apparatus in the production of the sulphated polysaccharide by treating the cultures with brefeldin A (BFA), a membrane-traffic inhibitor of the Golgi apparatus. Addition of BFA (10–25 μM) upon inoculation (logarithmic-phase cells) decreased the contents of both bound and soluble polysaccharides. Exposure of stationary-phase cultures to BFA (20 μM) inhibited the formation of the cell-wall bound polysaccharide to a greater extent than that of the soluble polysaccharide. Under conditions of nitrate starvation, BFA treatment had a more marked effect on soluble than on bound polysaccharide formation, as was supported by 14C pulse-chase experiments. BFA addition up to the first 10 h of the cell cycle affected cell division and bound polysaccharide and starch contents. An ultrastructural study showed that exposure of the cells to 20 μM BFA for 16 h disrupted the integrity of the Golgi apparatus. The integrated results of this study demonstrate clearly that BFA affects the architecture of the Golgi apparatus and hence polysaccharide production in algal cells.  相似文献   

16.
In this report, we have investigated the role of copper (Cu) and zinc (Zn) in oxidative stress induced by cadmium (Cd) in C6 cells. Cells were exposed to 20 μM Cd, 500 μM Cu, and 450 μM Zn for 24 h. Then, toxic effects, cellular metals levels, oxidative stress parameters, cell death, as well as DNA damage were evaluated. Cd induced an increase in cellular Cd, Cu, and Zn levels. This results not only in the inhibition of GSH-Px, GRase, CAT, and SOD activities but also in ROS overproduction, oxidative damage, and apoptotic cell death not related to Cu and Zn mechanisms. The thiol groups and GSH levels decreased, whereas the lipid peroxidation and DNA damage increased. The toxicity of Zn results from the imbalance between the inhibition of antioxidant activities and the induction of MT synthesis. The increase in Cu and Zn levels could be explained by the disruption of specific transporter activities, Cd interference with signaling pathways, and metal displacement. Our results suggest that the alteration of Cu and Zn homeostasis is involved in the oxidative stress induced by Cd.  相似文献   

17.
In the present study the potentials of aqueous extracts of the two plants, neem (Azadirachta indica) and Tulsi (Ocimum sanctum) were examined in alleviating arsenic toxicity in rice (Oryza sativa L.) plants grown in hydroponics. Seedlings of rice grown for 8 days in nutrient solution containing 50 μM sodium arsenite showed decline in growth, reduced biomass, altered membrane permeability and increased production of superoxide anion (O2·−), H2O2 and hydroxyl radicals (·OH). Increased lipid peroxidation marked by elevated TBARS (thiobarbituric acid reactive substances) level, increased protein carbonylation, alterated levels of ascorbate, glutathione and increased activities of enzymes SOD (superoxide dismutase), CAT (catalase), APX (ascorbate peroxidase) and GPX (glutathione peroxidase) were noted in the seedlings on As treatment. Exogenously added leaf aqueous extracts of Azadirachta indica (0.75 mg mL−1, w/v) and Ocimum sanctum (0.87 mg mL−1, w/v) in the growth medium considerably alleviated As toxicity effects in the seedlings, marked by reduced As uptake, restoration of membrane integrity, reduced production of ROS, lowering oxidative damage and restoring the levels of ascorbate, glutathione and activity levels of antioxidative enzymes. Arsenic uptake in the seedlings declined by 72.5% in roots and 72.8% in shoots, when A. indica extract was present in the As treatment medium whereas with O. sanctum extract, the uptake declined by 67.2% in roots and 70.01% in shoots. Results suggest that both A. indica and O. sanctum aqueous extracts have potentials to alleviate arsenic toxicity in rice plants and that A. indica can serve as better As toxicity alleviator compared to O. sanctum.  相似文献   

18.
Icilin is recognized as a chemical agonist of nociceptors and can activate TRPM8 channels. However, whether this agent has any effects on immune cells remains unknown. In this study, the effects of icilin on ion currents were investigated in RAW 264.7 murine macrophage-like cells. Icilin (1–100 μM) increased the amplitude of nonselective (NS) cation current (I NS) in a concentration-dependent manner with an EC50 value of 8.6 μM. LaCl3 (100 μM) or capsazepine (30 μM) reversed icilin-induced I NS; however, neither apamin (200 nM) nor iberiotoxin (200 nM) had any effects on it. In cell-attached configuration, when the electrode was filled with icilin (30 μM), a unique population of NS cation channels were activated with single-channel conductance of 158 pS. With the use of a long-lasting ramp pulse protocol, increasing icilin concentration produced a left shift in the activation curve of NS channels, with no change in the slope factor of the curve. The probability of channel opening enhanced by icilin was increased by either elevated extracellular Ca2+ or application of ionomycin (10 μM), while it was reduced by BAPTA-AM (10 μM). Icilin-stimulated activity is associated with an increase in mean open time and a reduction in mean closed time. Under current-clamp conditions, icilin caused membrane depolarization. Therefore, icilin interacts with the TRPM8-like channel to increase I NS and depolarizes the membrane in these cells.  相似文献   

19.
Efflux of glutathione (GSH) from astrocytes has been suggested as a key factor for neuroprotection by astrocytes. Here we evaluated if the Nrf2 activator curcumin affects basal and stimulated (Ca2+ omission) GSH efflux from cultures of astroglial cells. Stimulated efflux of GSH was observed at medium concentration of 0, 0.1 mM Ca2+, but not at 0.2 or 0.3 mM Ca2+. Astroglia treated with 30 μM curcumin increased the cellular content of GSH in parallel with elevated basal and stimulated efflux. Conversely treatment with buthionine sulfoximine lowered efflux of GSH. The efflux stimulated by Ca2+- omission was not affected by the P2X7-receptor antagonist Blue Brilliant G (100 nM) or the pannexin mimetic/blocking peptide 10Panx1 but inhibited by the gap junction blocker carbenoxolone (100 μM) and a hemichannel blocker Gap26 (300 μM). RNAi directed against Nrf2 partly inhibited the effect of curcumin. The results show that elevated cellular GSH by curcumin treatment enhance efflux from astroglial cells, a process which appear to be a prerequisite for astroglial mediated neuroprotection.  相似文献   

20.
The effects of trans fatty acids, elaidic acid (trans-9, C18:1) and linoelaidic acid (trans-9, trans-12 C18:2), at 20 or 40 μM in nerve growth factor differentiated PC12 cells with or without beta-amyloid peptide (Aβ) were examined. Elaidic acid treatment alone did not affect cell viability and oxidative injury associated markers (P > 0.05). However, co-treatments of elaidic acid and Aβ led to more reduction in mitochondrial membrane potential (MMP) and Na+-K+-ATPase activity, and more increase in DNA fragmentation and 8-hydroxydeoxyguanosine (8-OHdG) production than Aβ treatment alone (P < 0.05). Linoelaidic acid alone exhibited apoptotic and oxidative effects in cells via decreasing MMP and Na+-K+-ATPase activity, increasing reactive oxygen species (ROS) level, lowering glutathione content and glutathione peroxidase (GPX) activity (P < 0.05). The co-treatments of linoelaidic acid with Aβ further enhanced oxidative damage via enhancing the generation of ROS, nitrite oxide and 8-OHdG, elevating caspase-3, caspase-8 and nitric oxide synthase activities, as well as declining GPX, catalase and superoxide dismutase activities (P < 0.05). These results suggested that the interaction of linoelaidic acid and Aβ promoted oxidative stress and impaired mitochondrial functions in neuronal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号