首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate the purpose of butterfly puddling, we measured the amounts of Na+, K+, Ca2+, and Mg2+ that were absorbed or excreted during puddling by male Japanese Papilio butterflies through a urine test. All of the butterflies that sipped water with a Na+ concentration of 13 mM absorbed Na+ and excreted K+, although certain butterflies that sipped solutions with high concentrations of Na+ excreted Na+. According to the Na+ concentrations observed in naturally occurring water sources, water with a Na+ concentration of up to 10 mM appears to be optimal for the health of male Japanese Papilio butterflies. The molar ratio of K+ to Na+ observed in leaves was 43.94 and that observed in flower nectars was 10.93. The Na+ amount in 100 g of host plant leaves ranged from 2.11 to 16.40 mg, and the amount in 100 g of flower nectar ranged from 1.24 to 108.21 mg. Differences in host plants did not explain the differences in the frequency of puddling observed for different Japanese Papilio species. The amounts of Na+, K+, Ca2+, and Mg2+ in the meconium of both male and female butterflies were also measured, and both males and females excreted more K+ than the other three ions. Thus, the fluid that was excreted by butterflies at emergence also had a role in the excretion of the excessive K+ in their bodies. The quantities of Na+ and K+ observed in butterfly eggs were approximately 0.50 μg and 4.15 μg, respectively; thus, female butterflies required more K+ than male butterflies. Therefore, female butterflies did not puddle to excrete K+. In conclusion, the purpose of puddling for male Papilio butterflies is not only to absorb Na+ to correct deficiencies but also to excrete excessive K+.  相似文献   

2.
Summary The teiid lizardAmeiva quadrilineata has a nasal salt gland that responds to NaCl loading by increasing excretion of Na+ (from 1.12 to 2.63 M/100 gh), K+ (from 0.14 to 2.43 M/100 gh), and Cl (from 1.10 to 5.47 M/100 gh). For salt-loaded lizards these values represent 47% of the total excretion of Na+, 35% for K+, and 87% for Cl.The lizards forage on beaches and their diet includes large numbers of amphipods (Talorchestia) which are approximately twice as salty as the lizards' body fluids. All of the ingested Na+ and K+ can be excreted through the cloaca, but extra-renal excretion of Cl is probably important to the lizards under natural conditions.  相似文献   

3.
Li J  Chen G  Wang X  Zhang Y  Jia H  Bi Y 《Physiologia plantarum》2011,141(3):239-250
Glucose‐6‐phosphate dehydrogenase (G6PDH) is important for the activation of plant resistance to environmental stresses, and ion homeostasis is the physiological foundation for living cells. In this study, we investigated G6PDH roles in modulating ion homeostasis under salt stress in Carex moorcroftii callus. G6PDH activity increased to its maximum in 100 mM NaCl treatment and decreased with further increased NaCl concentrations. K+/Na+ ratio in 100 mM NaCl treatment did not exhibit significant difference compared with the control; however, in 300 mM NaCl treatment, it decreased. Low‐concentration NaCl (100 mM) stimulated plasma membrane (PM) H+‐ATPase and NADPH oxidase activities as well as Na+/H+ antiporter protein expression, whereas high‐concentration NaCl (300 mM) decreased their activity and expression. When G6PDH activity and expression were reduced by glycerol treatments, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio dramatically decreased. Simultaneously, NaCl‐induced hydrogen peroxide (H2O2) accumulation was abolished. Exogenous application of H2O2 increased G6PDH, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein expression and K+/Na+ ratio in the control and glycerol treatments. Diphenylene iodonium (DPI), the NADPH oxidase inhibitor, which counteracted NaCl‐induced H2O2 accumulation, decreased G6PDH, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio. Western blot result showed that G6PDH expression was stimulated by NaCl and H2O2, and blocked by DPI. Taken together, G6PDH is involved in H2O2 accumulation under salt stress. H2O2, as a signal, upregulated PM H+‐ATPase activity and Na+/H+ antiporter protein level, which subsequently resulted in the enhanced K+/Na+ ratio. G6PDH played a central role in the process.  相似文献   

4.
Summary After swelling in hyposmotic solution, Ehrlich ascites tumor cells shrink towards their original volume. Upon restoration of isosmolality (300 mOsm) the cells initially shrink but subsequently recover volume. This regulatory volume increase (RVI) is completely blocked when [Na+] o or [Cl] o is reduced by 50% in the presence of normal [K+] o . With normal [NaCl] o but less than 2 mm [K+] o , not only is volume recovery blocked but the cells lose KCl and shrink. When [K+] o is increased to 5 mm there is a rapid net uptake of K+ and Cl which results in volume recovery. This suggests that the reswelling phase requires the simultaneous presence of Na+, K+, and Cl. Although ouabain has no effect on volume recovery, bumetanide completely blocks RVI by inhibiting a cotransport pathway that mediates the net uptake of Na+, K+ and Cl in the ratio of 1Na1K2Cl. Na+ that accumulates is then replaced by K+ via the Na/K pump.I wish to thank my colleague, Dr. Thomas C. Smith for advice and helpful comments during the course of these studies. The excellent technical assistance provided by Rebecca Corcoran-Merrill is gratefully acknowledged.This investigation was supported by Grant CA 32927 from the National Cancer Institute, U.S. Public Health Service.  相似文献   

5.
Calcium has been demonstrated to ameliorate the inhibitory effects of high salinity on nutrient transport in plants. Time-course experiments were carried out to study the effect of high Ca2+ (6 mM) supply under saline conditions (100 mM NaCl) on the regulation of intracellular pH in excised barley (Hordeum vulgare L. cv Arivat) roots. In-vivo 31P-nuclear magnetic resonance measurements showed an alkalinization of the vacuolar pH after salt treatment. In the presence of high Ca2+ the extent of salt-induced vacuolar alkalinization was lower. High Ca2+ partially mitigated the salt-induced increase in Na+ content and decrease in K+ content of the root. The pattern of change in the vacuolar pH paralleled that of Na+ accumulation in the root. This correlation is consistent with the involvement of a tonoplast Na+/H+ antiporter in Na+ transport and the role of Ca2+ in Na+ uptake. High salt appeared to decrease the Pi content of the vacuole while high Ca2+ increased this content irrespective of the salt treatment.Abbreviation NMR nuclear magnetic resonance We are grateful to Dr. T.W.M. Fan and R.M. Highasi (University of California, Davis, USA) for their valuable help with the NMR experiments. We also thank Dr. J. Norlyn for his technical assistance. V. Martinez was supported by a Fulbright fellowship.  相似文献   

6.
Ma104 cells (renal, epithelial) have a peculiar way of resisting ouabain: their Na+,K+-pumps bind the drug with high affinity, cellular K+ is lost and cell division arrested, but cells do not detach as most cell types do. Then, if up to 4 days later the drug is removed, Ma104 cells recover K+ and resume proliferation (Contreras et al., 1994). In the present work, we investigate whether Ma104 cells are able to protect ouabain-sensitive MDCK cells in co-culture. The main finding is that they do, but in this case protection is not elicited by the usual mechanism of maintaining the K+ content of neighboring cells through cell-cell communications. Ma104 cells treated with ouabain simply remain attached to the substrate and to their MDCK neighbors, and both cells lose K+. This attachment includes tight junctions, because the transepithelial electrical resistance of the monolayers is not abolished by ouabain. Although the -subunit of the Na+,K+-ATPase is known to possess molecular characteristics of cell-cell attachment molecules, attachment between Ma104-MDCK cells does not seem to be mediated by this enzyme, as immunofluorescence analysis reveals that Na+,K+-ATPase is only inserted in the plasma membrane facing a neighboring cell of the same type.We wish to thank Dr. Enrique Rodríguez-Boulan (Cornell University Medical College) for the generous supply of Ma104 cells, as well as the generous economic support of COSBEL, SA de CV and the CONACYT of Mexico and the National Institutes of Health. Confocal experiments were performed in the Physiology Department's confocal microscopy unit, CINVESTAV.  相似文献   

7.
Bean plants (Phaseolus vulgaris) were very sensitive to moderate concentrations of NaCl, showing a dramatic decrease in their K+ content in the presence of this salt. Increasing the KCl content of the nutrient medium released the inhibitory effect of NaCl by increasing the K+ content of the plants. Likewise moderate concentrations of KCl were toxic for bean plants because they produced a large K+ loading. NaCl partially released this toxicity by inhibiting the K+ loading. When compared to the moderately salt tolerant sunflower plants (Helianthus annuus), bean plants showed a lower capacity to discriminate between K+ and Na+, at high Na+ levels, and an uncontrolled K+ uptake at moderate concentrations of K+. It is concluded that this low capacity of discrimination of the K+ uptake system of bean plants in presence of Na+ can account for by the NaCl sensitivity of bean plants.  相似文献   

8.
The salivary excretion of inorganic ions in sheep was studied parallel with infusion of salt solutions of different composition through the temporary isolated rumen cavityin vivo. The amount of Na+ excreted with saliva decreases by 15–55% after an intravenous loading with acetazolamide (50 mg/kg of animal weight) and by 25–55%, of K+, which represents a part of the ion excretion with participation of H+ exchanges. The Na+ excretion that is not inhibited by acetazolamide in sheep is about 40 mmol/10 kg of exchange mass per 1 h in all experiments with loading.  相似文献   

9.
以披针叶黄华(Thermopsis lanceolata)试管苗为材料,通过组培方法研究其在0、0.2%、0.4%、0.6%、0.8%和1.0%NaCl和Na2SO4胁迫30d后的生长、有机渗透调节物质和无机渗透调节物质(Na+、K+和Ca2+)含量的变化,以探讨其耐盐性机制。结果显示:(1)随NaCl和Na2SO4胁迫浓度的增加,披针叶黄华试管苗叶片脯氨酸和可溶性糖含量均显著持续增加,且NaCl胁迫下脯氨酸上升的幅度均大于相同浓度Na2SO4胁迫下的增幅,而可溶性糖上升的幅度却小于相同浓度Na2SO4胁迫下的幅度;可溶性蛋白含量随NaCl浓度的增大呈先升高后降低的趋势,但随Na2SO4浓度的增加呈持续上升的趋势。(2)随NaCl和Na2SO4浓度的增加,披针叶黄华试管苗Na+含量呈增加趋势且各处理均显著高于对照,Ca2+含量和叶片K+含量却呈逐渐减少趋势且各处理均显著低于对照,而根系K+含量呈先降后升的趋势;Na2SO4胁迫下披针叶黄华试管苗叶片Na+含量上升幅度以及K+和Ca2+含量下降幅度均明显低于相同浓度NaCl胁迫组;而Na+/K+和Na+/Ca2+比值随NaCl和Na2SO4浓度增加而升高;NaCl胁迫下,叶片Na+/K+和Na+/Ca2+高于相同浓度Na2SO4胁迫下的比值,而根系Na+/K+和Na+/Ca2+却低于相同浓度Na2SO4胁迫下的比值。研究表明,盐胁迫下,披针叶黄华试管苗通过抑制叶片中Na+积累并增加可溶性糖和可溶性蛋白含量,在根系中维持较高K+和Ca2+含量以及较低水平Na+/K+和Na+/Ca2+比,以降低披针叶黄华细胞渗透势来适应盐渍环境;披针叶黄华对NaCl胁迫的调节能力弱于Na2SO4。  相似文献   

10.
Reducing Na+ accumulation and maintaining K+ stability in plant is one of the key strategies for improving salt tolerance. AtHKT1;1 and AtSOS1 are not only the salt tolerance determinants themselves, but also mediate K+ uptake and transport indirectly. To assess the contribution of AtHKT1;1 and AtSOS1 to Na+ homeostasis and K+ nutrition in plant, net Na+ and K+ uptake rate, Na+ and K+ distributions in Arabidopsis thaliana wild type (WT), hkt1;1 mutant (athkt1;1) and sos1 mutant (atsos1) were investigated. Results showed that under 2.5 mM K+ plus 25 or 100 mM NaCl, athkt1;1 shoot concurrently accumulated more Na+ and less K+ than did WT shoot, suggesting that AtHKT1;1 was critical for controlling Na+ and K+ distribution in plant; while atsos1 root accumulated more Na+ and absorbed lower K+ than did WT root, implying that AtSOS1 was determiner of Na+ excretion and K+ acquisition. Under 0.01 mM K+, athkt1;1 absorbed lower Na+ than did WT with 100 mM NaCl, suggesting that AtHKT1;1 is involved in Na+ uptake in roots; while atsos1 shoot accumulated less Na+ than did WT shoot no matter with 25 or 100 mM NaCl, implying that AtSOS1 played a key role in controlling long-distance Na+ transport from root to shoot. We present a model in which coordination of AtHKT1;1 and AtSOS1 facilitates Na+ and K+ homeostasis in A. thaliana under salt stress: under the normal K+, the major function of AtHKT1;1 is Na+ unloading and AtSOS1 is mainly involved in Na+ exclusion, whereas under the low K+, AtHKT1;1 may play a dominant role in Na+ uptake and AtSOS1 may be mainly involved in Na+ loading into the xylem.  相似文献   

11.
Prosopis farcta was grown on hydroculture with additions of 0.5, 10, 50, and 100 mM NaCl and without salt treatment. In plants from a 0.5 mM NaCl treatment, Cl? was taken up into stems and leaves, but Na+ was withheld from the shoot. At 10 mM NaCl, shoot K+ concentration was below that of the control; Na+ and Cl? were taken up to stems and cotyledons in nearly equimolar amounts. However, in the leaves, Na+ concentrations were only half of those of Cl?. With increasing salt stress, Na+ and Cl? were transported to the shoot, but kept at relatively low levels in the roots. Na+/ K+ ratios in roots did not increase proportionally to those in the solution. At an external Na+/K+ of > 5 and a root Na+/K+ of >1 (10 mM NaCl treatment), K+ selectivity was induced which rose exponentially with increasing salt stress; and cell wall protuberances were discovered in the hypodermis at the zone of side root formation. These transfer cells were found neither in roots from the 0.5 mM NaCl treatment nor in the controls. Their possible role in the Na+/K+ selectivity of the roots of Prosopis farcta is discussed.  相似文献   

12.
Abstract Atriplex amnicola, was grown in nutrient solution cultures with concentrations of NaCl up to 750 mol m?3. The growth optimum was at 25–50 mol m?3 NaCl and growth was 10–15% of that value at 750 mol m?3 NaCl. Sodium chloride at 200 mol m?3 and higher reduced the rate of leaf extension and increased the time taken for a leaf to reach its maximal length. Concentrations of Na+, K+ and Mg2+ in leaves of different ages were investigated for plants grown at 25, 200 and 400 mol m?3 NaCl. Although leaves of plants grown at 200 and 400 mol m?3 NaCl had high Na+ concentrations at young developmental stages, much of this Na+ was located in the salt bladders. Leaves excluding bladders had low Na+ concentrations when young, but very high in Na+ when old. In contrast to Na+, K+ concentrations were similar in bladders and leaves excluding bladders. Concentrations of K+ were higher in the rapidly expanding than in the old leaves. At 400 mol m?3 NaCl, the K+:Na+ ratios of the leaves excluding bladders were 0.4–0.6 and 0.1 for rapidly expanding and oldest leaves, respectively. The Na+ content in moles per leaf, excluding bladders, increased linearly with the age of the leaves; concurrent increases in succulence were closely correlated with the Na + concentration in the leaves excluding the bladders. Soluble sugars and starch in leaves, stems and buds were determined at dusk and dawn. There was a pronounced diurnal fluctation in concentrations of carbohydrates. During the night, most plant parts showed large decreases in starch and sugar. Concentrations of carbohydrates in most plant organs were similar for plants grown at 25 and 400 mol m?3 NaCl. One notable exception was buds at dusk, where sugar and starch concentrations were 30–35% less in plants grown at 400 mol m?3 NaCl than in plants grown at 25 mol m?3 NaCl. The data indicate that the growth of A. amnicola at 400 mol m?3 NaCl is not limited by the availability of photosynthate in the plant as a whole. However, there could have been a growth limitation due to inadequate organic solutes for osmotic regulation.  相似文献   

13.
以当年生圆柏幼苗为实验材料,采用温室调控盆栽土培法研究了不同浓度NaCl(0、100、200、300mmol·L-1)胁迫21d对其生长情况及不同器官(根、茎、叶)中K~+、Na~+、Ca~(2+)和Mg~(2+)的吸收和分配的影响,以探讨圆柏幼苗对盐环境的生长适应性及耐盐机制。结果表明:(1)随着NaCl胁迫浓度的增加,圆柏幼苗生长,包括株高、地径、相对生长量以及生物量的积累均呈下降趋势,而其根冠比却增加。(2)在各浓度NaCl胁迫处理下,圆柏幼苗根、茎、叶中Na~+含量较对照均显著增加,而且叶中Na~+含量显著高于茎和根,叶中Na~+含量是根中的5倍。(3)随着NaCl胁迫浓度的升高,圆柏幼苗各器官中K~+、Ca~(2+)和Mg~(2+)含量以及K~+/Na~+、Ca~(2+)/Na~+及Mg~(2+)/Na~+比值均呈下降趋势。(4)在NaCl胁迫条件下,圆柏幼苗根系离子吸收选择性系数SK,Na、SCa,Na、SMg,Na显著提高,茎、叶离子转运选择性系数SCa,Na、SMg,Na则逐渐降低,叶中离子转运选择性系数SK,Na则随着NaCl胁迫浓度的升高显著降低,大量Na~+进入地上部,减缓了盐胁迫对根系的伤害。研究认为,圆柏幼苗的盐适应机制主要是通过根系的补偿生长效应及茎、叶对Na~+的聚积作用来实现的,同时也与根对K~+、Ca~(2+)、Mg~(2+)的选择性运输能力增强和茎、叶稳定的K~+、Ca~(2+)、Mg~(2+)的选择性运输能力有关。  相似文献   

14.
Summary A large conductance multi-state channel was identified and characterized in single channel recordings from cell-attached and excised patches of the human colonic tumor cell line, T84. The channel activity was dependent on the presence of both permeable cations and anions. In Na+-free symmetrical Cl solutions or Cl-free symmetrical Na+ solutions the channel was inactive. Addition of 5mm NaCl (Nal or KCl) induced channel activity. The selectivity sequence obtained from the shift in reversal potential was I(1.9) > Cl(1) > Na+(0.5) > K+(0.3). SO 4 2– , SCN (thiocyanate) and NMDG+ were impermeant. Multiple subconductance states were identified at all voltages explored (±90 mV). The minimum conductance encountered in symmetrical 100mm NaCl was a 15 pS substate, the maximum, 210 pS. The channel appeared to be composed of multiples of the 15 pS subunits which were reversibly blocked by the loop diuretic bumetanide (5 m).The authors wish to thank Morris Priddy and Charley Roberson for excellent technical assistance and Linda Pai and Steve Valder for participation in the early experiments. This study was supported by UPSH R01-DK39617 to A. Beaudet. L.V. was supported by a one-year fellowship from the Cystic Fibrosis Foundation.  相似文献   

15.
Na+, K+-pumps of most eukaryotic animal cells bind ouabain with high affinity, stop pumping, and consequently loose K+, detach from each other and from the substrate, and die. Lack of affinity for the drug results in ouabain resistance. In this work, we report that Ma104 cells (epithelial from Rhesus monkey kidney) have a novel form of ouabain-resistance: they bind the drug with high affinity (Km about 4×10–8 m), they loose their K+ and stop proliferating but, in spite of these, up to 100% of the cells remain attached in 1.0 m ouabain, and 53% in 1.0 mm. When 4 days later ouabain is removed from the culture medium, cells regain K+ and resume proliferation. Strophanthidin, a drug that attaches less firmly than ouabain, produces a similar phenomenon, but allows a considerably faster recovery. This reversal may be associated to the fact that, while in ouabain-sensitive MDCK cells Na+, K+-ATPases blocked by the drug are retrieved from the plasma membrane, those in Ma104 cells remain at the cell-cell border, as if they were cell-cell attaching molecules. Cycloheximide (10 g/ml) and chloroquine (10 m) impair this recovery, suggesting that it also depends on the synthesis and insertion of a crucial protein component, that may be different from the pump itself. Therefore ouabain resistance of Ma104 cells is not due to a lack of affinity for the drug, but to a failure of its Na+, K+-ATPases to detach from the plasma membrane in spite of being blocked by ouabain.We wish to thank Dr. E. Rodríguez-Boulán for the generous supply of Ma104 cells, as well as acknowledge the generous economic support of the National Research Council (CONACYT) of Mexico. Confocal experiments were performed in the Confocal Microscopy Unit of the Physiology Department, CINVESTAV.  相似文献   

16.
Summary A series of experiments was conducted to investigate whether ammonia is excreted across the seawater-acclimated blue crab's gills as ionized NH 4 + or as the free base, NH3. The net excretion rate of ammonia was not changed by transfer of the crabs to reduced (150 mM) Na+ solutions, by transfer to Na+- and K+-free artificial sea water, or by the sodium transport inhibitor amiloride. Ammonia excretion, therefore, does not appear to be linked to Na+ uptake in these animals, and appears to take place by passive diffusion. Since ammonia could diffuse either as NH 4 + or NH3, we examined two other kinds of evidence. The trans-epithelial potential was measured in sea water and the various artificial media. In spite of a 10 mV more negative potential in Na+-, K+-free medium, the ammonia excretion was not reduced. Also, in alkalinized seawater in which the partial pressure gradient of NH3 was reduced, but the concentration gradient of NH 4 + increased, ammonia excretion was reduced by about 70%. These results are consistent with the conclusion that ammonia excretion takes place by diffusion of the free base, NH3.Abbreviations SW sea water - ASW artificial sea water - t.e.p. transepithelial potential The University of Texas Marine Science Institute Contribution No. 461Supported by NSF Grant PCM77-24358  相似文献   

17.
The present study aimed to determine the mechanism of cation-selective secretion by multicellular salt glands. Using a hydroponic culture system, the secretion and accumulation of Na+ and K+ in Tamarix ramosissima and T. laxa under different salt stresses (NaCl, KCl and NaCl+KCl) were studied. Additionally, the effects of salt gland inhibitors (orthovanadate, Ba2+, ouabain, tetraethylammonium (TEA) and verapamil) on Na+ and K+ secretion and accumulation were examined. Treatment with NaCl (at 0–200 mmol L−1 levels) significantly increased Na+ secretion, whereas KCl treatment (at 0–200 mmol L−1 levels) significantly increased K+ secretion. The ratio of secretion to accumulation of Na+ was higher than that of K+. The changes in Na+ and K+ secretion differed after adding different ions into the single-salt solutions. Addition of NaCl to the KCl solution (at 100 mmol L−1 level, respectively) led to a significant decrease in K+ secretion rate, whereas addition of KCl to the NaCl solution (at 100 mmol L−1 level, respectively) had little impact on the Na+ secretion rate. These results indicated that Na+ secretion in Tamarix was highly selective. In addition, Na+ secretion was significantly inhibited by orthovanadate, ouabain, TEA and verapamil, and K+ secretion was significantly inhibited by ouabain, TEA and verapamil. The different impacts of orthovanadate on Na+ and K+ secretion might be the primary cause for the different Na+ and K+ secretion abilities of multicellular salt glands in Tamarix.  相似文献   

18.
A method to determine intracellular cation contents in Dunaliella by separation on cation-exchange minicolumns is described. The separation efficiency of cells from extracellular cations is over 99.9%; the procedure causes no apparent perturbation to the cells and can be applied to measure both fluxes and internal content of any desired cation. Using this technique it is demonstrated that the intracellular averaged Na+, K+, and Ca2+ concentrations in Dunaliella salina cultured at 1 to 4 molar NaCl, 5 millimolar K+, and 0.3 millimolar Ca2+ are 20 to 100 millimolar, 150 to 250 millimolar, and 1 to 3 millimolar, respectively. The intracellular K+ concentration is maintained constant over a wide range of media K+ concentrations (0.5-10 millimolar), leading to a ratio of K+ in the cells to K+ in the medium of 10 to 1,000. Severe limitation of external K+, induces loss of K+ and increase in Na+ inside the cells. The results suggest that Dunaliella cells possess efficient mechanisms to eliminate Na+ and accumulate K+ and that intracellular Na+ and K+ concentrations are carefully regulated. The contribution of the intracellular Na+ and K+ salts to the total osmotic pressure of cells grown at 1 to 4 molar NaCl, is 5 to 20%.  相似文献   

19.
植物染料在工业化应用过程中存在着资源限制,目标色相不丰富、色牢度不理想、植物染料本身的鉴别和成品的鉴别等问题。为了丰富染料植物资源的来源和提高染料植物资源的利用效率,该研究对西双版纳傣族利用的染料植物及其染色工艺涉及的相关植物进行了系统调查。2014年10月到2016年1月,采用半结构式访谈法对西双版纳14个村寨的56个关键信息人进行访谈,收集信息包括使用着色植物、媒染植物和助染植物的种类、傣名、利用部位和资源来历,以及预处理和染色过程工艺条件与技术步骤;采用参与式观察法对4种色相的10个染色工艺过程进行了记录,采集了凭证标本和图像资料;对调查信息进行了整理编目。结果表明:西双版纳地区的傣族使用11种着色植物和17种助染植物;目标色相有红、黄、蓝和绿。分析了傣族染料植物资源的发掘潜力、傣族利用植物染色对于染料植物利用的应用启发。该研究详细深入地记录了西双版纳傣族使用的染料植物的种类及其相关的组合和染色的过程。该研究结果对民族民间染料植物与染色工艺的产业化应用具有重要借鉴意义,为染料植物资源筛选及其染色工艺条件优化提供了参考。  相似文献   

20.
The renal response to infusion of three different saline solutions was studied in chicks of Leach's storm petrel (Oceanodroma leucorhoa). Each of the solutions (125 mmol·1-1 NaCl at 5.3 ml·h-1, 250 mmol·l-1 NaCl at 2.6 ml·h-1, and 550 mmol·l-1 NaCl at 1.2 ml·h-1) provided the same delivery of Nacl but in different volumes of water. Birds infused with 125 mmol·l-1 NaCl had a glomerular filtration rate of 25.7 ml·h-1, a urine flow rate of 4.4 ml·h-1, and excreted 71% of the infused Na+ load in the urine. With infusion of 250 mmol·l-1 NaCl, the glomerular filtration rate was unchanged (23.3 ml·h-1), but urine flow rate was reduced to 0.93 ml·h-1 and only 35% of the Na+ load was excreted in the urine. Infusion of 550 mmol·l-1 NaCl induced a sharp decrease in glomerular filtration rate (to 3.8 ml·h-1) and urine flow rate (to 0.08 ml·h-1), and only 1.4% of the infused Na+ was excreted in the urine. The contribution of different nephron populations to filtration was assessed by the pattern of staining of glomeruli by alcian blue infused during the last 30 min of the saline infusion. The numbers of stained glomeruli did not differ between birds infused with 125 and 250 mmol·l-1 NaCl (59000 and 55000 glomeruli per kidney, respectively), and the patterns of staining were similar for birds in these two groups. Birds infused with 550 mmol·l-1 NaCl had lighter staining overall and fewer stained glomeruli (37000 per kidney). This absence of staining was predominant in the smaller size classes of glomeruli, suggesting a selective shutdown of smaller (reptilian-type) nephrons during times of osmotic challenge in these birds. This may be part of an overall suite of water-conserving strategies employed by these chicks during their long confinement with irregular feeding in the nesting burrow.Abbreviations ADH antidiuretic hormone - GFR glomerular filtration rate - MT mammalian-type - P plasma inulin concentration - RT reptilian-type - U urine inulin concentration - V urine flow rate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号