首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
本文的目的是研究长时间低氧对离体培养的大鼠颈动脉体球细胞(glomuscell)的影响。对实验组Sprague-Dawley(SD)大鼠,首先将其置于模拟5000m高度低氧环境的低压舱中饲养7—10d,然后麻醉动物,取出颈动脉体,将其分离成单个细胞和细胞群体(clusters)。这些细胞在低氧条件(11%O2,5%CO2,84%N2)下培养2—3d。取自正常SD大鼠的颈动脉体细胞被分为两组,分别将其培养在常氧(21%O2,5%CO2,74%N2)或低氧环境中。球细胞的细胞内pH(pHi)和膜电位(MP)分别用H+选择性微电极和常规微电极同时测量。结果表明:长时间低氧降低球细胞的pHi,增加MP,其变化程度远远大于急性低氧的影响,而且当将细胞置于常氧中测量时其值不恢复。  相似文献   

3.
Carotid bodies are peripheral chemoreceptors that detect lowering of arterial blood O(2) level. The carotid body comprises clusters of glomus (type I) cells surrounded by glial-like sustentacular (type II) cells. Hypoxia triggers depolarization and cytosolic [Ca(2+)] ([Ca(2+)](i)) elevation in glomus cells, resulting in the release of multiple transmitters, including ATP. While ATP has been shown to be an important excitatory transmitter in the stimulation of carotid sinus nerve, there is considerable evidence that ATP exerts autocrine and paracrine actions in carotid body. ATP acting via P2Y(1) receptors, causes hyperpolarization in glomus cells and inhibits the hypoxia-mediated [Ca(2+)](i) rise. In contrast, adenosine (an ATP metabolite) triggers depolarization and [Ca(2+)](i) rise in glomus cells via A(2A) receptors. We suggest that during prolonged hypoxia, the negative and positive feedback actions of ATP and adenosine may result in an oscillatory Ca(2+) signal in glomus cells. Such mechanisms may allow cyclic release of transmitters from glomus cells during prolonged hypoxia without causing cellular damage from a persistent [Ca(2+)](i) rise. ATP also stimulates intracellular Ca(2+) release in sustentacular cells via P2Y(2) receptors. The autocine and paracrine actions of ATP suggest that ATP has important roles in coordinating chemosensory transmission in the carotid body.  相似文献   

4.
5.
Xu J  Xu F  Tse FW  Tse A 《Journal of neurochemistry》2005,92(6):1419-1430
Summary During hypoxia, ATP was released from type I (glomus) cells in the carotid bodies. We studied the action of ATP on the intracellular Ca(2+) concentration ([Ca(2+)](i)) of type I cells dissociated from rat carotid bodies using a Ca(2+) imaging technique. ATP did not affect the resting [Ca(2+)](i) but strongly suppressed the hypoxia-induced [Ca(2+)](i) elevations in type I cells. The order of purinoreceptor agonist potency in inhibiting the hypoxia response was 2-methylthioATP > ATP > ADP > alpha, beta-methylene ATP > UTP, implicating the involvement of P2Y(1) receptors. Simultaneous measurements of membrane potential and [Ca(2+)](i) show that ATP inhibited the hypoxia-induced Ca(2+) signal by reversing the hypoxia-triggered depolarization. However, ATP did not oppose the hypoxia-mediated inhibition of the oxygen-sensitive TASK-like K(+) background current. Neither the inhibition of the large-conductance Ca(2+)-activated K(+) (maxi-K) channels nor the removal of extracellular Na(+) could affect the inhibitory action of ATP. Under normoxic condition, ATP caused hyperpolarization and increase in cell input resistance. These results suggest that the inhibitory action of ATP is mediated via the closure of background conductance(s) other than the TASK-like K(+), maxi-K or Na(+) channels. In summary, ATP exerts strong negative feedback regulation on hypoxia signaling in rat carotid type I cells.  相似文献   

6.
Morphological changes in the rat carotid bodies 1, 2, 4, and 8 weeks after the termination of chronically hypocapnic hypoxia (10% O2 for 8 weeks) were examined by means of morphometry and immunohistochemistry. The rat carotid bodies after 8 weeks of hypoxic exposure were enlarged several fold with vascular expansion. The carotid bodies 1 and 2 weeks after the termination of 8 weeks of hypoxic exposure were diminished in size, although their diameter remained larger than the normoxic controls. The expanded vasculature in chronically hypoxic carotid bodies returned to the normoxic control state. In the carotid bodies 1 week after the termination of chronic hypoxia, the density of NPY fibers was remarkably increased and that of VIP fibers was dramatically decreased in comparison with the density in chronically hypoxic carotid bodies. In the carotid bodies 2 and 4 weeks after the termination of hypoxia, the density of SP and CGRP fibers was gradually increased. In the carotid bodies 8 weeks after the termination of hypoxia, the appearance of the carotid body returned to a nearly normoxic state, and the density of SP, CGRP, VIP, and NPY fibers also recovered to that of normoxic controls. These results suggest that the morphological changes in the recovering carotid bodies start at a relatively early period after the termination of chronic hypoxia, and a part of these processes may be under the control of peptidergic innervation.  相似文献   

7.
The cellular mechanisms underlying hypoxic pulmonary vasoconstriction are not fully understood. We examined the effect of hypoxia on Ca(2+) efflux from the cytosol in single Fura-2-loaded pulmonary artery myocytes. During mild hypoxia (pO(2)=50-60 Torr), peak [Ca(2+)](i) was increased and the rate of Ca(2+) removal from the cytosol was markedly slowed after stimuli that elevated [Ca(2+)](i). Removal of extracellular Na(+) potentiated the peak [Ca(2+)](i) rise and slowed the Ca(2+) decay rate in cells recorded under normoxic conditions; it did not further slow the Ca(2+) decay rate or potentiate the [Ca(2+)](i) increase in hypoxic cells. An Na(+)/Ca(2+) exchange current was recorded in isolated pulmonary artery myocytes. Switching from Li(+) to Na(+) (130 mM) revealed an inward current with reversal potential consistent with the Na(+)/Ca(2+) exchange current in cells in which [Ca(2+)](i) was clamped at 1 microM similar currents, although smaller, were observed with normal resting [Ca(2+)](i) using the perforated patch clamp technique. The Na(+)/Ca(2+) exchange current was markedly inhibited in myocytes exposed to mild hypoxia. RT-PCR revealed the expression of specific alternatively spliced RNAs of NCX1 in rat pulmonary arteries. These findings provide an enhanced understanding of the molecular mechanisms underlying hypoxic sensing in pulmonary arteries.  相似文献   

8.
Hypoxia and inflammation often develop concurrently in numerous diseases, and the influence of hypoxia on natural evolution of inflammatory responses is widely accepted. Glucocorticoid-induced leucine zipper (GILZ) is thought to be an important mediator of anti-inflammatory and immune-suppressive actions of glucocorticoid (GC). However, whether GILZ is involved in hypoxic response is still unclear. In this study, we investigated the effects of hypoxic exposure and/or the administration of dexamethasone (Dex), a synthetic GC on GILZ expression both in vitro and in vivo, and further explored the relationship between GILZ and proinflammatory cytokines IL-1β, IL-6, and TNF-α under normoxic and hypoxic conditions. We found that hypoxia not only remarkably upregulated the expression of GILZ, but also significantly enhanced Dex-induced expression of GILZ in macrophages and the spleen of rats. ERK activity is found involved in the upregulation of GILZ induced by hypoxia. Inhibiting the expression of GILZ in RAW264.7 cells using specific GILZ small interfering RNA led to a significant increase in mRNA production and protein secretion of IL-1β and IL-6 in hypoxia and abrogated the inhibitory effect of Dex on expression of IL-1β and IL-6 in hypoxia. We also found that adrenal hormones played pivotal roles in upregulation of GILZ expression in vivo. Altogether, data presented in this study suggest that GILZ has an important role not only in adjusting adaptive responses to hypoxia by negatively regulating the activation of macrophages and the expression of proinflammatory cytokines, but also in mediating the anti-inflammatory action of GC under hypoxic conditions.  相似文献   

9.
10.
Microfluorimetric measurements of intracellular calcium ion concentration [Ca(2+)](i) were employed to examine the effects of chronic hypoxia (2.5% O(2), 24 h) on Ca(2+) stores and capacitative Ca(2+) entry in human neuroblastoma (SH-SY5Y) cells. Activation of muscarinic receptors evoked rises in [Ca(2+)](i) which were enhanced in chronically hypoxic cells. Transient rises of [Ca(2+)](i) evoked in Ca(2+)-free solutions were greater and decayed more slowly following exposure to chronic hypoxia. In control cells, these transient rises of [Ca(2+)](i) were also enhanced and slowed by removal of external Na(+), whereas the same manoeuvre did not affect responses in chronically hypoxic cells. Capacitative Ca(2+) entry, observed when re-applying Ca(2+) following depletion of intracellular stores, was suppressed in chronically hypoxic cells. Western blots revealed that presenilin-1 levels were unaffected by chronic hypoxia. Exposure of cells to amyloid beta peptide (1-40) also increased transient [Ca(2+)](i) rises, but did not mimic any other effects of chronic hypoxia. Our results indicate that chronic hypoxia causes increased filling of intracellular Ca(2+) stores, suppressed expression or activity of Na(+)/Ca(2+) exchange and reduced capacitative Ca(2+) entry. These effects are not attributable to increased amyloid beta peptide or presenilin-1 levels, but are likely to be important in adaptive cellular remodelling in response to prolonged hypoxic or ischemic episodes.  相似文献   

11.
The carotid body is an arterial chemoreceptor organ that senses arterial pO(2) and pH. Previous studies have indicated that both reactive oxygen species (ROS) and nitric oxide (NO) are important potential mediators that may be involved in the response of the carotid body to hypoxia. However, whether their production by the chemosensitive elements of the carotid body is indeed oxygen-dependent is currently unclear. Thus, we have investigated their production under normoxic (20% O(2)) and hypoxic (1% O(2)) conditions in slice preparations of the rat carotid body by using fluorescent indicators and confocal microscopy. NO-synthesizing enzymes were identified by immunohistochemistry and histochemistry, and the subcellular localization of the NO-sensitive indicator diaminofluorescein was determined by a photoconversion technique and electron microscopy. Glomus cells of the carotid body responded to hypoxia by increases in both ROS and NO production. The hypoxia-induced increase in NO generation required (to a large extent, but not completely) extracellular calcium. Glomus cells were immunoreactive to endothelial NO synthase but not to the neuronal or inducible isoforms. Ultrastructurally, the NO-sensitive indicator was observed in mitochondrial membranes after exposure to hypoxia. The data show that glomus cells respond to exposure to hypoxia by the enhanced production of both ROS and NO. NO production by glomus cells is probably mediated by endothelial NO synthase, which is activated by calcium influx. The presence of NO indicator in mitochondria suggests the hypoxic regulation of mitochondrial function via NO in glomus cells.  相似文献   

12.
Hypoxia produces sex dimorphic immune responses in males and proestrus females. Because Kupffer cells are the major source of proinflammatory cytokines, studies were conducted to discern IL-6 production in mouse Kupffer cells following hypoxia. Hypoxia enhances TLR4 expression in Kupffer cells irrespective of sex. However, MyD88 and Src expression in Kupffer cells decreased significantly after hypoxia in proestrus females, whereas Src protein expression and phosphorylation increased in males in concurrence with differences in IL-6 production. 17beta-estradiol administration elevated MyD88 and Src expression in males to levels in normoxic proestrus females. Administration of Src inhibitor in hypoxic males prevented increased IL-6 production. Thus, differential regulation of MyD88 and Src in males and females plays an important role in sex-specific immune response following hypoxia.  相似文献   

13.
The effects of hypercapnic acidosis and hypoxia on intracellular Ca(2+) concentration ([Ca(2+)](i)) were determined with Indo 1 in enzymatically isolated single type I cells from neonatal rat carotid bodies. Type I cells responded to graded hypoxic stimuli with graded [Ca(2+)](i) rises. The percentage of cells responding was also dependent on the severity of the hypoxic stimulus. Raising CO(2) from 5 to 10 or 20% elicited a significant increase in [Ca(2+)](i) in the same cells as those that responded to hypoxia. Thus both stimuli can be sensed by each individual cell. When combinations of hypoxic and acidic stimuli were given simultaneously, the responses were invariably greater than the response to either stimulus given alone. Indeed, in most cases, the response to hypercapnia was slightly potentiated by hypoxia. These data provide the first evidence that the classic synergy between hypoxic and hypercapnic stimuli observed in the intact carotid body may, in part, be an inherent property of the type I cell.  相似文献   

14.
Sun CY  Hu W  Qi SS  Dai KY  Hu SW  Lou XF 《生理学报》2008,60(2):228-234
本文旨在探讨莪术油注射液对慢性低氧大鼠学习与记忆的影响及其可能机制.将Sprague.Dawley大鼠随机分为对照组、慢性低氧组、5 mg/kg体重莪术油组、10 mg/kg体重莪术油组、20 mg/kg体重莪术油组,每组14只.慢性低氧处理采用低氧舱内吸入大约10%O2、5%CO2,饲养10 h/d,持续饲养28 d.莪术油组大鼠低氧处理前腹腔注射相应浓度的莪术油注射液.实验结束次日,通过Morris水迷宫测试各组动物学习和记忆成绩的变化;测定各组大鼠血清和海马组织丙二醛(malonaldehyde,MDA)含量和超氧化物歧化酶(superoxide dismutase,SOD)活性以及海马组织Ca2 浓度([Ca2 i]);通过免疫组织化学和Western blot检测磷酸化Ca2 /钙调蛋白依赖性蛋白激酶Ⅱ(phosphorylated Ca2 /calmodulin-dependent pro-tein kinase Ⅱ,p-CaMKII)在海马组织和胞膜上的表达.结果显示,与对照组相比,慢性低氧组大鼠隐蔽平台的逃避潜伏期明显延长(P<0.05),血清和海马组织MDA含量明显增高,SOD活性显著降低(P<0.05,P<0.01),海马组织[Ca2 ]i明显增高(P<0.01),海马P-CaMKII表达量显著降低(P<0.01).与慢性低氧组比较,莪术油各组发生以下变化:10、20 mg/kg体重莪术油组大鼠隐蔽平台的逃避潜伏期显著缩短(P<0.05):5、10、20 mg/kg体重莪术油组大鼠血清和海马组织MDA含量均显著降低(P相似文献   

15.
16.
The distribution and ultrastructural characteristics of calbindin D-28k immunoreactive nerve fibers were examined in the carotid body of the normoxic control rats by light and electron microscopy, and the abundance of calbindin D-28k fibers in the carotid body was compared in normoxic and chronically hypoxic rats (10% O2 and 3.0-4.0% CO2 for 3 months). Calbindin D-28k immunoreactivity was recognized in nerve fibers within the carotid body. Calbindin D-28k immunoreactive nerve fibers appeared as thin processes with many varicosities. They were distributed around clusters of glomus cells, and around blood vessels. Immunoelectron microscopy revealed that the calbindin D-28k immunoreactive nerve terminals are in close apposition with the glomus cells, and membrane specialization is visible in some terminals. Some dense-cored vesicles in the glomus cells were aggregated in this contact region. The chronically hypoxic carotid bodies were found to be enlarged several fold, and a relative abundance of calbindin D-28k fibers was lesser than in the normoxic carotid bodies. When expressed by the density of varicosities per unit area of the parenchyma, the density of calbindin D-28k fibers associated with the glomus cells in chronically hypoxic carotid bodies was decreased by 70%. These immunohistochemical findings indicate a morphological basis for involvement of calcium binding protein in the neural pathway that modulates carotid body chemoreception.  相似文献   

17.
It is well established that reciprocal modulation exists between the central nervous system and immune system. Interleukin (IL)-1β, a proinflammatory cytokine secreted at early stage of immune challenge, has been recognized as one of the informational molecules in immune-to-brain communication. However, how this large molecule is transmitted to the brain is still unknown. In recent years it has been reported that the cranial nerves, especially the vagus, may play a pivotal role in this regard. It is proposed that IL-1β may bind to its corresponding receptors located in the glomus cells of the vagal paraganglia and then elicit action potentials in the nerve. The existence of IL-1 receptor type I (IL-1RI) in the vagal paraganglia has been shown. The carotid body, which is the largest peripheral chemoreceptive organ, is also a paraganglion. We hypothesize that the carotid body might play a role similar to the vagal paraganglia because they are architectonically similar. Recently we verified the presence of IL-1RI in the rat carotid body and observed increase firing in the carotid sinus nerve following IL-1β stimulation. The aim of this study was to observe the changes in expression of IL-1RI and tyrosine hydroxylase (TH), a rate-limiting enzyme for catecholamine synthesis, in the glomus cells of the rat carotid body following intraperitoneal injection of IL-1β. The radioimmunoassay result showed that the blood IL-1β level was increased after the intraperitoneal injection of rmIL-1β (750 ng/kg) from 0.48 ± 0.08 to 0.78 ± 0.07 ng/ml (P < 0.05). Immunofluorescence and Western blot analysis showed that the expression of IL-1RI and TH in the rat carotid body was increased significantly following peritoneal IL-1β stimulation. In addition, double immunofluorescence labeling for TH and PGP9.5, a marker for glomus cells, or TH immunofluoresence with hematoxylin-eosin (HE) counterstaining revealed that a considerable number of glomus cells did not display TH immunoreactivity. These data provide morphological evidence for the response of the carotid body to proinflammatory cytokine stimulation. The results also indicate that not all of the glomus cells express detectable TH levels either in normal or in some abnormal conditions. Xi-Jing Zhang and Xi Wang are co-first authors.  相似文献   

18.
The present study tested the hypothesis that chronic hypoxia alters pregnancy-mediated adaptation of Ca2+ homeostasis and contractility in the uterine artery. Uterine arteries were isolated from nonpregnant and near-term pregnant ewes of normoxic control or high-altitude (3820 m) hypoxic (oxygen pressure in the blood [PaO2], 60 mm Hg) treatment for 110 days. Contractions and intracellular-free Ca2+ concentration ([Ca2+]i) were measured simultaneously in the same tissue. In normoxic animals, pregnancy increased norepinephrine (NE), but not 5-hydroxy-thymide (5-HT) or KCl, contractile sensitivity in the uterine artery. Chronic hypoxia significantly attenuated NE-induced contractions in the pregnant, but not nonpregnant, uterine arteries. Similarly, 5-HT-mediated contractions of nonpregnant arteries were not changed. In the pregnant uterine artery, chronic hypoxia significantly increased NE-mediated Ca2+ mobilization, but decreased the Ca2+ sensitivity. In addition, hypoxia increased the calcium ionophore A23187-induced relaxation in pregnant, but not nonpregnant, uterine arteries. However, the A23187-mediated reduction of [Ca2+]i was significantly impaired in hypoxic arteries. In contrast, hypoxia significantly increased the slope of the [Ca2+]i-tension relationship of A23187-induced reductions in [Ca2+]i and tension in the pregnant uterine artery. The results suggest that the contractility of nonpregnant uterine artery is insensitive to moderate chronic hypoxia, but the adaptation of sympathetic tone that normally occurs in the uterine artery during pregnancy is inhibited by chronic hypoxia. In addition, changes in Ca2+ sensitivity of myofilaments play a predominant role in the adaptation of uterine artery contractility to pregnancy and chronic hypoxia.  相似文献   

19.
范娟  王曦  彭正午  郭玲  王百忍  徐学红 《生物磁学》2013,(26):5008-5011
目的:观察慢性低压性缺氧和/或重组鼠白介素-1β(traiL-1β)刺激对大鼠颈动脉体(carotidbody,CB)中酪氨酸羟化酶(ty.rosinehydroxylase,TH)表达的影响。方法:雄性SD大鼠分为8组,分别为缺氧刺激0、1、2、3周组和缺氧0、1、2、3周的同时伴rmlL-1β刺激组。对CB进行免疫组化染色,并用westernblot法对TH进行半定量分析。结果:相对于缺氧0周组,缺氧1周、缺氧2周和缺氧3周组大鼠CB中TH的含量明显增加。相对于正常大鼠,rmlL-1β刺激引起大鼠CB中TH表达量增加。相对于单纯给予缺氧1周和缺氧2周,缺氧1周和缺氧2周同时给予mlL-1β刺激后引起大鼠CB中TH表达量的增加。结论:慢性缺氧和rmlL-1β刺激均可致颈动脉体TH上调,慢性缺氧伴rmlL-1β刺激比单纯缺氧刺激可引起TH更显著的增加。这个结果提示慢性缺氧或促炎性细胞因子tL-1β刺激不仅能够分剐促进颈动脉体中儿茶酚胺类物质的合成。而且IL-1β刺激可以促进慢性缺氧时颈动脉体中儿茶酚胺类物质的合成。这说明促炎性细胞因子可能对大鼠颈动脉体的慢性缺氧感受发挥调节作用。  相似文献   

20.
In anesthetized rats, increases in phrenic nerve amplitude and frequency during brief periods of hypoxia are followed by a reduction in phrenic nerve burst frequency [posthypoxia frequency decline (PHFD)]. We investigated the effects of chronic exposure to hypoxia on PHFD and on peripheral and central O2-sensing mechanisms. In Inactin-anesthetized (100 mg/kg) Sprague-Dawley rats, phrenic nerve discharge and arterial pressure responses to 10 s N2 inhalation were recorded after exposure to hypoxia (10 +/- 0.5% O2) for 6-14 days. Compared with rats maintained at normoxia, PHFD was abolished in chronic hypoxic rats. Because of inhibition of PHFD, the increased phrenic burst frequency and amplitude after N2 inhalation persisted for 1.8-2.8 times longer in chronic hypoxic (70 s) compared with normoxic (25-40 s) rats (P < 0.05). After acute bilateral carotid body denervation, N2 inhalation produced a short depression of phrenic nerve discharge in both chronic hypoxic and normoxic rats. However, the degree and duration of depression of phrenic nerve discharge was smaller in chronic hypoxic compared with normoxic rats (P < 0.05). We conclude that after exposure to chronic hypoxia, a reduction in PHFD contributes to an increased duration of the acute hypoxic ventilatory response in anesthetized rats. Furthermore, after exposure to chronic hypoxia, the central network responsible for respiration is more resistant to the depressant effects of acute hypoxia in anesthetized rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号