首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamic regulation of nitric oxide synthase (NOS) activity and cGMP levels suggests a functional role in the development of nervous systems. We report evidence for a key role of the NO/cGMP signalling cascade on migration of postmitotic neurons in the enteric nervous system of the embryonic grasshopper. During embryonic development, a population of enteric neurons migrates several hundred micrometers on the surface of the midgut. These midgut neurons (MG neurons) exhibit nitric oxide-induced cGMP-immunoreactivity coinciding with the migratory phase. Using a histochemical marker for NOS, we identified potential sources of NO in subsets of the midgut cells below the migrating MG neurons. Pharmacological inhibition of endogenous NOS, soluble guanylyl cyclase (sGC) and protein kinase G (PKG) activity in whole embryo culture significantly blocks MG neuron migration. This pharmacological inhibition can be rescued by supplementing with protoporphyrin IX free acid, an activator of sGC, and membrane-permeant cGMP, indicating that NO/cGMP signalling is essential for MG neuron migration. Conversely, the stimulation of the cAMP/protein kinase A signalling cascade results in an inhibition of cell migration. Activation of either the cGMP or the cAMP cascade influences the cellular distribution of F-actin in neuronal somata in a complementary fashion. The cytochemical stainings and experimental manipulations of cyclic nucleotide levels provide clear evidence that NO/cGMP/PKG signalling is permissive for MG neuron migration, whereas the cAMP/PKA cascade may be a negative regulator. These findings reveal an accessible invertebrate model in which the role of the NO and cyclic nucleotide signalling in neuronal migration can be analyzed in a natural setting.  相似文献   

2.
Nitric oxide (NO) signaling results in both neurotoxic and neuroprotective effects in CNS and PNS neurons, respectively, after nerve lesioning. We investigated the role of NO signaling on optic nerve regeneration in the goldfish ( Carassius auratus ). NADPH diaphorase staining revealed that nitric oxide synthase (NOS) activity was up-regulated primarily in the retinal ganglion cells (RGCs) 5–40 days after axotomy. Levels of neuronal NOS (nNOS) mRNA and protein also increased in the RGCs alone during this period. This period (5–40 days) overlapped with the process of axonal elongation during regeneration of the goldfish optic nerve. Therefore, we evaluated the effect of NO signaling molecules upon neurite outgrowth from adult goldfish axotomized RGCs in culture. NO donors and dibutyryl cGMP increased neurite outgrowth dose-dependently. In contrast, a nNOS inhibitor and small interfering RNA, specific for the nNOS gene, suppressed neurite outgrowth from the injured RGCs. Intra-ocular dibutyryl cGMP promoted the axonal regeneration from injured RGCs in vivo . None of these molecules had an effect on cell death/survival in this culture system. This is the first report showing that NO-cGMP signaling pathway through nNOS activation is involved in neuroregeneration in fish CNS neurons after nerve lesioning.  相似文献   

3.
4.
In higher vertebrates, the central nervous system (CNS) is unable to regenerate after injury, at least partially because of growth-inhibiting factors. Invertebrates lack many of these negative regulators, allowing us to study the positive factors in isolation. One possible molecular player in neuronal regeneration is the nitric oxide (NO)-cyclic guanosine-monophosphate (cGMP) transduction pathway which is known to regulate axonal growth and neural migration. Here, we present an experimental model in which we study the effect of NO on CNS regeneration in flat-fillet locust embryo preparations in culture after crushing the connectives between abdominal ganglia. Using whole-mount immunofluorescence, we examine the morphology of identified serotonergic neurons, which send a total of four axons through these connectives. After injury, these axons grow out again and reach the neighboring ganglion within 4 days in culture. We quantify the number of regenerating axons within this period and test the effect of drugs that interfere with NO action. Application of exogenous NO or cGMP promotes axonal regeneration, whereas scavenging NO or inhibition of soluble guanylyl cyclase delays regeneration, an effect that can be rescued by application of external cGMP. NO-induced cGMP immunostaining confirms the serotonergic neurons as direct targets for NO. Putative sources of NO are resolved using the NADPH-diaphorase technique. We conclude that NO/cGMP promotes outgrowth of regenerating axons in an insect embryo, and that such embryo-culture systems are useful tools for studying CNS regeneration.  相似文献   

5.
A novel aspect of cellular signalling during the formation of the nervous system is the involvement of the messenger molecule nitric oxide (NO), which has been discovered in the mammalian vascular system as mediator of smooth muscle relaxation. NO is a membrane-permeant molecule, which activates soluble guanylyl cyclase (sGC) and leads to the formation of cyclic GMP (cGMP) in target cells. The analysis of specific cell types in model insects such as Locusta, Schistocerca, Acheta, Manduca, and Drosophila shows that the NO/cGMP pathway is required for the stabilization of photoreceptor growth cones at the start of synaptic assembly in the optic lobe, for regulation of cell proliferation, and for correct outgrowth of pioneer neurons. Inhibition of the NOS and sGC enzymes combined with rescue experiments show that NO, and potentially also another atypical messenger, carbon monoxide (CO), orchestrate cell migration of enteric neurons. Cultured insect embryos are accessible model systems in which the molecular pathways linking cytoskeletal rearrangement to directed cell movements can be analyzed in natural settings. Based on the results obtained from the insect models, I discuss current evidence for NO and cGMP as essential signalling molecules for the development of vertebrate brains.  相似文献   

6.
Nitric oxide (NO) is known as a gaseous messenger in the nervous system. It plays a role in synaptic plasticity, but also in development and regeneration of nervous systems. We have studied the function of NO and its signaling cascade via cyclic GMP in the locust embryo. Its developing nervous system is well suited for pharmacological manipulations in tissue culture. The components of this signaling pathway are localized by histochemical and immunofluorescence techniques. We have analyzed cellular mechanisms of NO action in three examples: 1. in the peripheral nervous system during antennal pioneer axon outgrowth, 2. in the enteric nervous system during migration of neurons forming the midgut nerve plexus, and 3. in the central nervous system during axonal regeneration of serotonergic neurons after axotomy. In each case, internally released NO or NO-induced cGMP synthesis act as permissive signals for the developmental process. Carbon monoxide (CO), as a second gaseous messenger, modulates enteric neuron migration antagonistic to NO.  相似文献   

7.
8.
Nitric oxide (NO) is a membrane-permeant signaling molecule which activates soluble guanylyl cyclase and leads to the formation of cyclic GMP (cGMP). The NO/cGMP signaling system is thought to play essential roles during the development of vertebrate and invertebrate animals. Here, we analyzed the cellular expression of this signaling pathway during the development of the Drosophila melanogaster nervous system. Using NADPH diaphorase histochemistry as a marker for NO synthase, we identified several neuronal and glial cell types as potential NO donor cells. To label NO-responsive target cells, we used the detection of cGMP by an immunocytochemical technique. Incubation of tissue in an NO donor induced cGMP immunoreactivity (cGMP-IR) in individual motoneurons, sensory neurons, and groups of interneurons of the brain and ventral nerve cord. A dynamic pattern of the cellular expression of NADPHd staining and cGMP-IR was observed during embryonic, larval, and prepupal phases. The expression of NADPH diaphorase and cGMP-IR in distinct neuronal populations of the larval central nervous system (CNS) indicates a role of NO in transcellular signaling within the CNS and as potential retrograde messenger across the neuromuscular junction. In addition, the presence of NADPH diaphorase-positive imaginal discs containing NO-responsive sensory neurons suggests that a transcellular NO/cGMP messenger system can operate between cells of epithelial and neuronal phenotype. The discrete cellular resolution of donor and NO-responsive target cells in identifiable cell types will facilitate the genetic, pharmacological, and physiological analysis of NO/cGMP signal transduction in the developing nervous system of Drosophila.  相似文献   

9.
During the formation of the brain, neuronal cell migration and neurite extension are controlled by extracellular guidance cues. Here, I discuss experiments showing that the messenger nitric oxide (NO) is an additional regulator of cell motility. NO is a membrane permeant molecule, which activates soluble guanylyl cyclase (sGC) and leads to the formation of cyclic GMP (cGMP) in target cells. The analysis of specific cells types in invertebrate models such as molluscs, insects and the medicinal leech provides insight how NO and cyclic nucleotides affect the wiring of nervous systems by regulating cell and growth-cone motility. Inhibition of the NOS and sGC enzymes combined with rescue experiments show that NO signalling orchestrates neurite outgrowth and filopodial dynamics, cell migration of enteric neurons, glial migration and axonogenesis of pioneer fibers. Cultured insect embryos are accessible model systems in which cellular mechanisms of NO-induced cytoskeletal reorganizations can be analyzed in natural settings. Finally, I will outline some indications that NO may also regulate cell motility in the developing and regenerating vertebrate nervous system.  相似文献   

10.
Nitric oxide (NO)-dependent soluble guanylyl cyclase (sGC) is operative in mammalian cells, but its presence and the role in cGMP production in pituitary cells have been incompletely characterized. Here we show that sGC is expressed in pituitary tissue and dispersed cells, enriched lactotrophs and somatotrophs, and GH(3) immortalized cells, and that this enzyme is exclusively responsible for cGMP production in unstimulated cells. Basal sGC activity was partially dependent on voltage-gated calcium influx, and both calcium-sensitive NO synthases (NOS), neuronal and endothelial, were expressed in pituitary tissue and mixed cells, enriched lactotrophs and somatotrophs, and GH(3) cells. Calcium-independent inducible NOS was transiently expressed in cultured lactotrophs and somatotrophs after the dispersion of cells, but not in GH(3) cells and pituitary tissue. This enzyme participated in the control of basal sGC activity in cultured pituitary cells. The overexpression of inducible NOS by lipopolysaccharide + interferon-gamma further increased NO and cGMP levels, and the majority of de novo produced cGMP was rapidly released. Addition of an NO donor to perifused pituitary cells also led to a rapid cGMP release. Calcium-mobilizing agonists TRH and GnRH slightly increased basal cGMP production, but only when added in high concentrations. In contrast, adenylyl cyclase agonists GHRH and CRF induced a robust increase in cGMP production, with EC(50)s in the physiological concentration range. As in cells overexpressing inducible NOS, the stimulatory action of GHRH and CRF was preserved in cells bathed in calcium-deficient medium, but was not associated with a measurable increase in NO production. These results indicate that sGC is present in secretory anterior pituitary cells and is regulated in an NO-dependent manner through constitutively expressed neuronal and endothelial NOS and transiently expressed inducible NOS, as well as independently of NO by adenylyl cyclase coupled-receptors.  相似文献   

11.
Behavioral and pharmacological studies in insects have suggested that the nitric oxide (NO)/cyclic GMP (cGMP) signaling pathway is involved in the formation of long-term memory (LTM) associated with olfactory learning. However, the target molecules of NO and the downstream signaling pathway are still not known. In this study, we investigated the action of NO on single voltage-dependent Ca2+ channels in the intrinsic neurons known as Kenyon cells within the mushroom body of the cricket brain, using the cell-attached configuration of the patch-clamp technique. Application of the NO donor S-nitrosoglutathione (GSNO) increased the open probability (NPO) of single Ca2+ channel currents. This GSNO-induced increase was blocked by ODQ, a soluble guanylate cyclase (sGC) inhibitor, suggesting that the NO generated by GSNO acts via sGC to raise cGMP levels. The membrane-permeable cGMP analog 8-Bro-cGMP also increased the NPO of single Ca2+ channel currents. Pretreatment of cells with KT5823, a protein kinase G blocker, abolished the excitatory effect of GSNO. These results suggest that NO augments the activity of single Ca2+ channels via the cGMP/PKG signaling pathway. To gain insight into the physiological role of NO, we examined the effect of GSNO on action potentials of Kenyon cells under current-clamp conditions. Application of GSNO increased the frequency of action potentials elicited by depolarizing current injections, indicating that NO acts as a modulator resulting in a stimulatory signal in Kenyon cells. We discuss the increased Ca2+ influx through these Ca2+ channels via the NO/cGMP signaling cascade in relation to the formation of olfactory LTM.  相似文献   

12.
Nitric oxide (NO) performs multiple physiological roles as a biological signaling molecule. The role of NO and cGMP signaling in embryonic stem (ES) cell-derived cardiomyocytes (CM) has been investigated but many questions remain. In this study, we examined the expression of the NO signaling pathway components nitric oxide synthase (NOS-1, 2, 3), soluble guanylyl cyclase (sGCalpha(1) and beta(1)) and protein kinase G (PKG) genes and sGC activity in murine ES cells subjected to differentiation by embryoid body (EB) formation. We found that in undifferentiated ES cells, NOS-1, NOS-3, and sGCbeta(1) were detected while NOS-2, sGCalpha(1), and PKG were very low or undetectable. When ES cells were subjected to differentiation, NOS-1 abruptly decreased within one day, NOS-2 mRNA became detectable after several days, and NOS-3 increased after 7-10 days. Levels of sGCalpha(1), sGCbeta(1), and PKG all increased gradually over a several day time course of differentiation in EB outgrowths. Analysis of sGC activity in cell lysates derived from undifferentiated ES cells revealed that NO could not stimulate cGMP. However, lysates from differentiated EB outgrowths produced abundant cGMP levels after NO stimulation. Purification of ES-cell derived CM revealed that mRNA expression of all the NOS isoforms was very low to absent while sGCalpha(1) and beta(1) subunit mRNAs were abundant and sGC-mediated cGMP production was apparent in this population of cells. These data suggest that cGMP-mediated NO signaling may play a minor role, if any, in undifferentiated ES cells but could be involved in the early differentiation events or physiological processes of ES cells or ES cell-derived lineages.  相似文献   

13.
Traumatic injury or the pathogenesis of some neurological disorders is accompanied by inflammatory cellular mechanisms, mainly resulting from the activation of central nervous system (CNS) resident microglia. Under inflammatory conditions, microglia up‐regulate the inducible isoform of NOS (iNOS), leading to the production of high concentrations of the radical molecule nitric oxide (NO). At the onset of inflammation, high levels of microglial‐derived NO may serve as a cellular defense mechanism helping to clear the damaged tissue and combat infection of the CNS by invading pathogens. However, the excessive overproduction of NO by activated microglia has been suggested to govern the inflammation‐mediated neuronal loss causing eventually complete neurodegeneration. Here, we investigated how NO influences phagocytosis of neuronal debris by BV‐2 microglia, and how neurite outgrowth of human NT2 model neurons is affected by microglial‐derived NO. The presence of NO greatly increased microglial phagocytic capacity in a model of acute inflammation comprising lipopolysaccharide (LPS)‐activated microglia and apoptotic neurons. Chemical manipulations suggested that NO up‐regulates phagocytosis independently of the sGC/cGMP pathway. Using a transwell system, we showed that reactive microglia inhibit neurite outgrowth of human neurons via the generation of large amounts of NO over effective distances in the millimeter range. Application of a NOS blocker prevented the LPS‐induced NO production, totally reversed the inhibitory effect of microglia on neurite outgrowth, but reduced the engulfment of neuronal debris. Our results indicate that a rather simple notion of treating excessive inflammation in the CNS by NO synthesis blocking agents has to consider functionally antagonistic microglial cell responses during pharmaceutic therapy. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 566–584, 2016  相似文献   

14.
The source size and density determine the extent of nitric oxide (NO) diffusion which critically influences NO signaling. In the brain, NO released from postsynaptic somas following NMDA-mediated activation of neuronal nitric oxide synthase (nNOS) retrogradely affects smaller presynaptic targets. By contrast, in guinea pig trigeminal motor nucleus (TMN), NO is produced presynaptically by tiny and disperse nNOS-containing terminals that innervate large nNOS-negative motoneurons expressing the soluble guanylyl-cyclase (sGC); consequently, it is uncertain whether endogenous NO supports an anterograde signaling between pre-motor terminals and postsynaptic trigeminal motoneurons. In retrogradely labeled motoneurons, we indirectly monitored NO using triazolofluorescein (DAF-2T) fluorescence, and evaluated sGC activity by confocal cGMP immunofluorescence. Multiple fibers stimulation enhanced NO content and cGMP immunofluorescence into numerous nNOS-negative motoneurons; NOS inhibitors prevented depolarization-induced effects, whereas NO donors mimicked them. Enhance of cGMP immunofluorescence required extracellular Ca(2+), a nNOS-physiological activator, and was prevented by inhibiting sGC, silencing neuronal activity or impeding NO diffusion. In conclusion, NO released presynaptically from multiple cooperative tiny fibers attains concentrations sufficient to activate sGC in many motoneurons despite of the low source/target size ratio and source dispersion; thus, endogenous NO is an effective anterograde neuromodulator. By adjusting nNOS activation, presynaptic Ca(2+) might modulate the NO diffusion field in the TMN.  相似文献   

15.
Recent studies have investigated the source and target neuronsfor the diffusible neuronal messenger molecule nitric oxide(NO) in the nervous system of the locust. Here we compare theneuroarchitecture of NO signaling between different sensorysystems. The available neuroanatomical data implicate NO insensory processing for modalities as diverse as mechanoreception,vision, olfaction, gustation and hearing. All respective first-ordersensory neuropils are innervated by NOS-containing interneurons.The corresponding sensory receptor neurons lack NOS but seemto express soluble guanylyl cyclase (sGC), the main receptormolecule for NO in the nervous system. The axonal projectionsof sensory neurons must therefore be considered the primarytarget of NO in these sensory neuropils. An exception is theantennal olfactory system where sGC is apparently expressedin interneurons, in partial colocalization with NOS. We discuss these anatomical findings in relation to the spatiotemporalcharacteristics of NO signaling. Many sensory neuropils areorganized into maps that reflect neuronal response properties(i.e., tuning or receptive fields). A local release of NO withinsuch maps will therefore most strongly affect neurons with similarcoding properties. If sensory receptor activity triggers NOsynthesis locally in the map, this mechanism could link groupsof similarly tuned receptors dynamically according to stimulusintensity. Furthermore, we explore the functional implicationsof differences between sensory systems in the anatomy of NOS-expressinginterneurons, using the compound eye and the thoracic tactilesystem as examples.  相似文献   

16.
The role of NO and cGMP signaling in tumor biology has been extensively studied during the past three decades. However, whether the pathway is beneficial or detrimental in cancer is still open to question. We suggest several reasons for this ambiguity: first, although NO participates in normal signaling (e.g., vasodilation and neurotransmission), NO is also a cytotoxic or apoptotic molecule when produced at high concentrations by inducible nitric-oxide synthase (iNOS or NOS-2). In addition, the cGMP-dependent (NO/sGC/cGMP pathway) and cGMP-independent (NO oxidative pathway) components may vary among different tissues and cell types. Furthermore, solid tumors contain two compartments: the parenchyma (neoplastic cells) and the stroma (nonmalignant supporting tissues including connective tissue, blood vessels, and inflammatory cells) with different NO biology. Thus, the NO/sGC/cGMP signaling molecules in tumors as well as the surrounding tissue must be further characterized before targeting this signaling pathway for tumor therapy. In this review, we focus on the NOS-2 expression in tumor and surrounding cells and summarized research outcome in terms of cancer therapy. We propose that a normal function of the sGC-cGMP signaling axis may be important for the prevention and/or treatment of malignant tumors. Inhibiting NOS-2 overexpression and the tumor inflammatory microenvironment, combined with normalization of the sGC/cGMP signaling may be a favorable alternative to chemotherapy and radiotherapy for malignant tumors.  相似文献   

17.
Exposure of rat pulmonary artery smooth muscle cells (rPASMC) to cytokines leads to nitric oxide (NO) production by NO synthase 2 (NOS2). NO stimulates cGMP synthesis by soluble guanylate cyclase (sGC), a heterodimer composed of alpha(1)- and beta(1)-subunits. Prolonged exposure of rPASMC to NO decreases sGC subunit mRNA and protein levels. The objective of this study was to determine whether levels of NO produced endogenously by NOS2 are sufficient to decrease sGC expression in rPASMC. Interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) increased NOS2 mRNA levels and decreased sGC subunit mRNA levels. Exposure of rPASMC to IL-1beta and TNF-alpha for 24 h decreased sGC subunit protein levels and NO-stimulated sGC enzyme activity. L-N(6)-(1-iminoethyl)lysine (NOS2 inhibitor) or 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (sGC inhibitor) partially prevented the cytokine-mediated decrease in sGC subunit mRNA levels. However, cytokines also decreased sGC subunit mRNA levels in PASMC derived from NOS2-deficient mice. These results demonstrate that levels of NO and cGMP produced in cytokine-exposed PASMC are sufficient to decrease sGC subunit mRNA levels. In addition, cytokines can decrease sGC subunit mRNA levels via NO-independent mechanisms.  相似文献   

18.
Characterization of NO/cGMP-Mediated Responses in Identified Motoneurons   总被引:3,自引:0,他引:3  
1. Nitric oxide (NO) is thought to play a neuromodulatory role in the nervous system of vertebrate and invertebrate species. In the hornworm Manduca sexta, NO-mediated signaling has been implicated in behavioral and developmental processes, but its exact function in neurons is unknown. In this study, we identify specific neurons in the CNS of Manduca larvae that accumulate cGMP in response to treatment with NO donors in the presence of cGMP-phosphodiesterase inhibitors. Subsets of these neurons were identified as motoneuron-12 (MN12) and intersegmental motoneurons (ISMs), which innervate dorsal oblique muscles of the larvae. 2. To investigate the physiological role of NO-evoked increases in cGMP in these motoneurons we performed intracellular recordings; we found that application of NO donors caused an increase in neuronal excitability that was characterized by an increase in the spontaneous firing frequency. When action potentials and EPSPs were blocked, NO treatment evoked a depolarization of the resting membrane potential and a decrease in the measured input resistance in both MN12 and the ISMs. 3. Additional experiments with MN12 showed that treatment with the cGMP analogue, 8-Br-cGMP mimicked the NO effect on the resting potential and the input resistance. Furthermore, MN12 incubation with the NOS inhibitor, L-NNA, resulted in a small hyperpolarization of the resting potential and an increase in the input resistance, and incubation with the sGC inhibitor, ODQ blocked the NO-evoked depolarization of MN12. Finally, NO treatment during voltage clamping of MN12 evoked an inward positive current. 4. Taken together, these results suggest that NO can act as a “gain control” of neuronal excitability, which might have an important role in insect behavior.  相似文献   

19.
Developmental studies in both vertebrates and invertebrates implicate an involvement of nitric oxide (NO) signaling in cell proliferation, neuronal motility, and synaptic maturation. However, it is unknown whether NO plays a role in the development of the human nervous system. We used a model of human neuronal precursor cells from a well-characterized teratocarcinoma cell line (NT2). The precursor cells proliferate during retinoic acid treatment as spherical aggregate culture that stains for nestin and βIII-tubulin. Cells migrate out of the aggregates to acquire fully differentiated neuronal phenotypes. The cells express neuronal nitric oxide synthase and soluble guanylyl cyclase (sGC), an enzyme that synthesizes cGMP upon activation by NO. The migration of the neuronal precursor cell is blocked by the use of nNOS, sGC, and protein kinase G (PKG) inhibitors. Inhibition of sGC can be rescued by a membrane permeable analog of cGMP. In gain of function experiments the application of a NO donor and cGMP analog facilitate cell migration. Our results from the differentiating NT2 model neurons point towards a vital role of the NO/cGMP/PKG signaling cascade as positive regulator of cell migration in the developing human brain.  相似文献   

20.
We assessed the possible link between endothelin receptor mediated phosphoinositide breakdown and NO/cGMP signaling pathways in rat arcuate nucleus-median eminence fragments (AN-ME), brain structures known to contain a rich plexus of nitric oxide synthase (NOS)-containing neurons and fibers, together with densely arranged endothelin ETB-receptors-like immunoreactive fibres. Our data show that ET-1, ET-3 and the ETB-receptors agonist, IRL 1620, increased inositol monophosphate (InsP1) accumulation, NOS activity and cGMP formation, in a similar degree. The stimulatory effect of ETs on InsP1 accumulation and cGMP formation was inhibited by the phospholipase C (PLC) inhibitor, neomycin, and the absence of extracellular calcium, suggesting that calcium is involved in endothelin receptor-induced PLC activation. The L-arginine analog, L-NAME, inhibited ET-1 or IRL1620-stimulated cGMP formation. The ETA receptor antagonists BQ 123, did not alter, while the ETB receptor antagonists BQ788 inhibited ETs-induced increase in the PI metabolism, NOS activity and cGMP generation. Our data indicate that in AN-ME, ETB receptor signals through receptor-mediated calcium dependent-stimulation of phosphoinositide breakdown and activation of NOS/cGMP signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号