首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cDNA for a β-glucosidase (EC3.2.1.21) was isolated from rye ( Secale cereale , cv Motto) and the sequence corresponding to the mature protein cloned into pET21a expression vector and used for transformation of Escherichia coli. The recombinant β-glucosidase expressed in E. coli was recognized by antibodies to maize β-glucosidase and exhibited the same kinetic properties on the endogenous substrates hydroxamic acid glucosides and artificial substrates as the native enzyme purified from rye. The enzyme monomer had an apparent molecular weight of about 67 kDa. The isolated cDNA was analysed with web-based chloroplast targeting prediction programs. The programs predicted a chloroplast targeting peptide with a cleavage site between amino acid 49 and 50. Sequence alignment of the plastidic rye β-glucosidase showed that the putative sites for substrate specificity of maize Glu1, W378 and F198 (F197) are conserved in the rye enzyme, whereas F205, F466 and A467 of maize Glu1 are exchanged for histidine, glycine and serine, respectively, in rye. The plastidic β-glucosidase is expressed in all plant parts and the highest levels were found in the coleoptile and mesocotyl.  相似文献   

2.
Abstract A gene library of the hyperthermophilic bacterium Thermotoga maritima strain MSB8 was constructed in Escherichia coli . Two non-related T. maritima chromosomal DNA fragments were physically characterized. They conferred the synthesis of thermostable X-Gal (5-bromo-4-chloro-3-indolyl-β- d -galactopyranoside)-hydrolysing activity upon the host organism. The biochemical properties of the recombinant enzymes indicated that genes for a β-galactosidase (BgaA) and a broad-specificity β-glucosidase (Bg1A) had been isolated. The genes were desiignted bgaA and bglA , respectively. According to analytical size exclusion chromatography data, BgaA and BglA had native molecular masses of approximately 240 kDa and 95 kDa, respectively. Both enzymes apparently have dimeric subunit structure. An additional β-glucosidase (designated BglB) activity, clearly distinct from BglA in terms of substrate specificity, could be detected in a crude extract of T. maritima .  相似文献   

3.
Abstract β-Glucosidase activity was investigated in stream-bed sediments using 4-methylumbelliferyl-β- d -glucopyranoside (MUF-β-Glc) as a model substrate. In a perfused core technique, water containing MUF-β-Glc was perfused up through sediment cores. β-glucosidase activity quantified from the release of fluorescent MUF in water discharge from the cores. At low rates of perfusion, maximum β-glucosidase activity ( V max) in perfused sediments was similar to that in suspended (unperfused) sediments. Substrate affinity( K m)was higher in the suspended sediments. V maxand K m both increased when the perfusion rate was raised, although naturally-low substrate concentrations could mean that variability in perfusion rates has little effect on enzyme activity in the field. V max was uninfluenced by whether ground or stream water was perfused through the sediments, but K m was higher in cores perfused with groundwater. Increasing concentrations of glucose in the perfusion water resulted in a progressive inhibition of β-glucosidase activity. Although natural concentrations of glucose were low, the high turnover of enzymatically-released glucose probably means that β-glucosidase activity could be regulated by product concentration.  相似文献   

4.
The lactic acid bacterium, Leuconostoc mesenteroides, when grown on an arbutin-containing medium, was found to produce an intracellular β-glucosidase. The enzyme was purified by chromatofocusing, ion-exchange chromatography and gel filtration. The molecular mass of the purified intracellular β-glucosidase, as estimated by gel filtration, was 360 kDa. The tetrameric structure of the β-glucosidase was determined following treatment of the purified enzyme with dodecyl sulphate (SDS). The intracellular β-glucosidase exhibited optimum catalytic activity at 50°C and pH 6 with citrate–phosphate buffer, and 5·5 with phosphate buffer. The enzyme was active against glycosides with (1→4)-β, (1→4)-α and (1→6)-α linkage configuration. From Lineweaver–Burk plots, K m values of 0·07 mmol l−1 and 3·7 mmol l−1 were found for p -nitrophenyl-β- D -glucopyranoside and linamarin, respectively. The β-glucosidase was competitively inhibited by glucose and by D -gluconic acid–lactone and a glucosyl transferase activity was observed in the presence of ethanol. The β-glucosidase of Leuconostoc mesenteroides, with cyanogenic activity, could be of potential interest in cassava detoxification, by hydrolysing the cyanogenic glucosides present in cassava pulp.  相似文献   

5.
Aims:  To evaluate the soybean polyphenol glucosides bioconversion to aglycone forms by different β-glucosidases-producing filamentous fungi to enhance their antioxidant activity.
Methods and Results:  Soybean defatted flour was submitted to solid-state fermentation with Aspergillus niger , Aspergillus niveus and Aspergillus awamori . The fungi studied produced approximately the same β-glucosidase activity units amount when p- nitrophenyl-β- d -glucopyranoside was used as substrate for the assay. However, electrophoretic analysis, using 4-methylumbellipheryl-β- d -glucopyranoside as substrate, showed that β-glucosidase produced by A.   niveus was more active. Fermented methanolic extracts showed an increase in polyphenol and genistein contents and antioxidant activities. The highest genistein content was found in soybean fermented by A. niveus . Methanolic extracts of the soybean fermented by the different fungi showed a similar capacity of scavenging H2O2 generated in vivo by the tumour promoter 12- O- tetradecanoyl phorbol-13-acetate.
Conclusions:  A.   niveus synthesized a β-glucosidase with higher specificity to hydrolyse genistin β-glycosidic bond than those produced by A .  awamori and A. niger .
Significance and Impact of the Study:  The utilization of these β-glucosidases-producing fungi in soybean fermentation processes resulted in the obtaining of methanolic extracts with different antioxidant potentials that could be used either therapeutically or as an antioxidant in nonphysiological oxidative stress conditions, as the one induced in skin by UV radiation.  相似文献   

6.
Characterization of β-glucosidase activity in yeasts of oenological origin   总被引:4,自引:4,他引:0  
I. ROSI, M. VINELLA AND P. DOMIZIO. 1994. Three hundred and seventeen strains representing 20 species of yeasts were screened for the presence of β-glucosidase activity. All of the strains of the species Debaryomyces castellii, Deb. hansenii, Deb. polymorphus, Kloeckera apiculata and Hansenula anomala showed β-glucosidase activity, but only one of 153 strains of Saccharomyces cerevisiae. The other species behaved differently, depending upon the strain. The strains that hydrolysed arbutin were checked to localize the β-glucosidase activity. A strain of Deb. hansenii exhibited the highest exocellular activity and some wall-bound and intracellular activity. The β-glucosidase synthesis from this yeast was enhanced by aerobic conditions of growth, was repressed by high glucose concentration (9%) and occurred during exponential growth. The optimum conditions for enzymatic preparations of Deb. hansenii were between pH 4.0 and 5.0 and 40C. A high concentration of ethanol and glucose did not reduce the ezymatic activity. The enzymatic preparations of Deb. hansenii released monoterpenols and other alcohols from a grape glycoside extract.  相似文献   

7.
The activities of four enzymes (β-glucosidase, β-glucuronidase, nitrate reductase and nitroreductase) in selected intestinal bacteria ( Escherichia coli, Clostridium sp., Streptococcus sp., Bacteroides sp. and Lactobacillus salivarius ) were measured after growth in vitro and in vivo . The five strains differed in their activites with Clostridium sp. being the most active for β-gjucosidase, β-glucuronidase and nitroreductase, and E. coli the most active producer of nitrate reductase. Enzyme activity in vivo tended to be higher than in vitro but there were instances where the comparative activities were reversed.  相似文献   

8.
The influence of different cultivation conditions on β-glucosidase production and of some parameters on the activity and stability of this enzyme were studied inNectria catalinensis. Maximal β-glucosidase production was achieved with ammonium nitrate (0.5 g N/L) as nitrogen source. Tween 80, Tween 20 and Triton X-100 increased β-glucosidase yields, Tween 80 was the most effective for enzyme release and growth at a concentration of 3.4 mmol/L. On the other hand, Tween 20 and Triton X-100 had an inhibitory effect onN. catalinensis growth. A temperature of 23°C and an initial pH of cultures of 6.5 were optimal for biomass and β-glucosidase production. Under optimal cultural conditions (ammonium nitrate, 0.5 g N/L; Tween 80, 3.4 mmol/L; 23°C; initial pH 6.5) the β-glucosidase yield was increased more than five fold respect to the initial state. Optimal temperature for β-glucosidase activity was 45°C, the initial activity dropped 60 % after 6 h of incubation at this temperature. Optimal pH for enzyme activity was 5.3. At this pH the β-glucosidase was completely stable after 3 d of incubation. TheV andK m values calculated from Lineweaver-Burk and Eadie-Hofstee plots were 0.23 μmol 4-nitrophenol per min per mg of protein and 0.25 mmol 4-nitrophenol β-d-glucopyranoside per L, respectively. The activation energy according to Arrhenius plot was 49.6 KJ/mol.  相似文献   

9.
The activities of three bacterial biotransformation enzymes (β-glucuronidase, β-glucosidase, nitrate reductase) were determined in suspensions of rat caecal contents or human faeces over the pH range 6–8. All three enzymes were influenced by pH, as exemplified by β-glucosidase activity which diminished as pH increased. In other instances the rat and human flora showed distinct profiles, with nitrate reductase activity undetectable in human faeces below pH 6–6, whereas the rat caecal flora displayed optimal reduction of nitrate around neutrality. The most pronounced host-species difference was found with β-glucuronidase, which showed maximal activity at pH 6–0 in human faecal bacteria, while the rat caecal flora expressed greatest activity at pH 8–0. All three enzyme activities were associated with that fraction of rat caecal or human faecal material sedimented by centrifugation at 5000 g for 15 min, with little or no metabolism occurring in the 11000 g supernatant fluid. The results demonstrate that pH has a pronounced effect on the enzymic activity of bacterial preparations from rat and human sources.  相似文献   

10.
11.
A Curvularia sp. isolated from soil was found to produce extracellular β-glucosidase activity when grown in yeast extract, peptone, carboxymethylcellulose (YPC) medium. An initial medium pH of 6·5 and cultivation temperature of 30°C were found to be most suitable for high enzyme productivity. The pH and temperature optima for the enzyme were 4·0 and 70°C, respectively. Under these conditions, the enzyme exhibited a Km (0-nitrophenyl-β- d -glucoside) value of 0.20 mmol/l. Several divalent metal ions inhibited enzyme activity at high concentration. EDTA. also inhibited β-glucosidase activity.  相似文献   

12.
Abstract The effect of l -sorbose on growth, morphology, cell wall composition and β-glucosidase location has been examined with Trichoderma pseudokoningii . Sorbose-grown cultures exhibited a longer lag phase, a tendency to more frequent hyphal branching and showed a decreased cell wall content of β-1,3-glucan. In sorbose-containing cultures, a significant higher portion of total β-glucosidase was present in the culture fluid, whereas in sorbose-lacking control cultures the major part of activity was associated with the cell walls. The results support the previous hypothesis (Kubicek, C.P. (1982) Arch. Microbiol. 132, 349–354) that β-1.3-glucan is involved in cell wall binding of β-glucosidase in Trichoderma pseudokoningii .  相似文献   

13.
Occurrence of Glycoside Hydrolases in Plant Pathogenic and Related Bacteria   总被引:2,自引:2,他引:0  
One hundred and twenty-eight isolates representing 37 species and six genera of plant pathogenic and related bacteria were tested for the presence of /3–galactosidase, glucosidase. β-glucosidase and β-xylosidase; using nitrophenyl glycopyranosides as substrates. Agrobacterium tumefaciens, Corynebacterium flaccumfaciens, C. michiganense. Flavobacterium pectinovorum and Pseudomonas maltophilia showed activity on all of the four substrates. Xanthomonas albilineans and three nomenspecies of the X. campestris group had little or no o-glucosidase activity but all other tests with Xanthomonas spp . were positive. None of the fluorescen; pseudomonads examined possessed β-galactosidase but P. stizolobii, P. andropogonis and P. rubrisubalbicans , among the non-fluorescent pseudomonads showed activity.  相似文献   

14.
A DNA fragment containing a Klebsiella oxytoca gene for aesculinase activity was cloned on the multicopy plasmid pBR322. This β-glucosidase activity was confined to aesculin hydrolysis only. It was expressed equally well in Escherichia coli, Salmonella typhimurium and Aeromonas hydrophila. Two polypeptides were found to be encoded within the 2·6 kb of the cloned DNA encoding aesculinase activity.  相似文献   

15.
Chen P  Fu X  Ng TB  Ye XY 《Biotechnology letters》2011,33(12):2475-2479
A β-glucosidase gene (bglI) from Trichoderma reesei was cloned into the pPIC9 vector and integrated into the genome of Pichia pastoris GS115. Under the control of the methanol-inducible alcohol oxidase (AOX) promoter and using Saccharomyces cerevisiae secretory signal peptide (α-factor), the recombinant β-glucosidase was expressed and secreted into the culture medium. The maximum recombinant β-glucosidase activity achieved was 60 U/ml, and β-glucosidase expression reached 0.3 mg/ml. The recombinant 76 kDa β-glucosidase was purified 1.8-fold with 26% yield and a specific activity of 197 U/mg. It was optimally active at 70°C and pH 5.0.  相似文献   

16.
The properties of intracellular β-glucosidases produced from two yeast isolates identified as Hanseniaspora sp. BC9 and Pichia anomala MDD24 were characterized. β-Glucosidase from Hanseniaspora sp. BC9 was not inhibited by both 20% w/v fructose and 20% w/v sucrose and was slightly inhibited by glucose (> 40% relative β-glucosidase activity with 10% w/v glucose). β-Glucosidase from P. anomala MDD24 was inhibited by glucose, fructose and sucrose. In the presence of 4–12% v/v ethanol, β-glucosidase from P. anomala MDD24 was stimulated in range 110–130% relative activity whereas β-glucosidase from Hanseniaspora sp. BC9 was substantially inhibited in the presence of ethanol. Finally, juice and wine of the Muscat-type grape variety, Traminette, were selected to determine sugar-bound volatile aroma release, particularly terpenes, by the activity of those β-glucosidases. The results showed that high concentration of free aroma compounds were detected from Traminette juice treated with β-glucosidase from Hanseniaspora sp. BC9 and Traminette wine treated with β-glucosidase from P. anomala MDD24. The preliminary results with proposed an application of these enzymes in commercial wine production lead to more efficient of β-glucosidase from Hanseniaspora sp. BC9 in releasing desirable aromas during an early stage of alcoholic fermentation while β-glucosidase from P. anomala MDD24 is suitable at the final stage of alcoholic fermentation.  相似文献   

17.
Few bacteria are capable of degrading crystalline cellulose but there is considerable interest in the properties of enzyme systems with this capability. In the bovine and ovine rumen the principal cellulolytic bacterium is Fibrobacter (formerly Bacteroides ) succinogenes. The cellulase system of this organism is composed of multiple enzyme components, including a constitutive and cell-associated β -glucosidase active against cellobiose. The properties of the β -glucosidase activity have been investigated with the chromogenic substrate β -nitrophenyl β -D-glucoside (pNPG). Hydrolytic activity against pNPG was located primarily in the cytoplasm and the cytoplasmic membrane but showed a gradual migration to the periplasm during growth on either glucose or cellobiose. Activity against cellobiose was found in the periplasm in significant amounts in all growth phases. Of the β -glucosides tested, only cellobiose and pNPG were hydrolysed by crude cell extracts. In the presence of cellobiose, however, the rate of hydrolysis of pNPG was stimulated up to 10-fold, and extracts hydrolysed methylumbelliferyl β -D-glucoside, 5-bromo-4-chloro-3-indolyl β -D-glucoside, arbutin and aesculin. Activities against pNPG in the presence and absence of cellobiose displayed similar instability in the presence of oxygen; both were stabilized by dithiothreitol and the temperature and pH optima were identical. A significant proportion of the membrane-associated β -glucosidase was released by treatment with 0.3 mol/1 KCl, and fractionation by chromatography on CM-cellulose showed the presence of two activities against pNPG, only one of which was stimulated by cellobiose.  相似文献   

18.
GLYCOSIDASES IN NORMAL AND SCRAPIE MOUSE BRAIN   总被引:4,自引:2,他引:2  
Abstract— The pH optima of ten glycosidases have been determined in normal and scrapie-affected mouse brain. The enzymes α-mannosidase, α-glucosidase and β-glucosidase displayed two peaks of enzyme activity over the pH range examined.
There is a significant increase in the activity of the enzymes α-mannosidase, β-glucuronidase, N -acetyl β-D-glucosaminidase, N -acetyl β-galactosaminidase, β-glucosidase (pH 4.1), α-fucosidase and β-xylosidase in the brains of mice clinically affected with scrapie, whilst only α-mannosidase (pH 4.1), β-glucuronidase, N -acetyl-β-D-glucosinidase and N- acetyl-β-D-gaiactosaminidase are elevated before mice exhibit signs of the disease.  相似文献   

19.
An extracellular β-glucosidase enzyme was purified from the fungus Aspergillus niger strain 322 . The molecular mass of the enzyme was estimated to be 64 kDa by SDS gel electrophoresis. Optimal pH and temperature for β-glucosidase were 5·5 and 50 °C, respectively. Purified enzyme was stable up to 50 °C and pH between 2·0 and 5·5. The Km was 0·1 mmol l−1 for cellobiose. Enzyme activity was inhibited by several divalent metal ions.  相似文献   

20.
Studies were carried out for β-glucosidase production using apple pomace (AP) in solid-state fermentation using 24 factorial design and response surface methodology. The influence of four independent variables including initial moisture level and inducers [veratryl alcohol (VA), lactose (LAC) and copper sulfate (CS)] was studied. The experimental design showed that initial moisture level had significant negative effect on the response. Higher β-glucosidase activity of 64.18 IU/gram fermented substrate (gfs) was achieved in solid-state tray fermentation with optimum conditions having initial moisture level 55% (v/w), pH 4.5, 2 mM/kg VA, 2% (w/w) LAC and 1.5 mM/kg CS concentration, respectively,. The non-specific chitinase 70.28 ± 6.34 IU/gfs and chitosanase activities 60.18 ± 6.82 to 64.20 ± 7.12 IU/gfs were observed. The study demonstrated that AP can be potentially used for the β-glucosidase production by Aspergillus niger. Moreover, β-glucosidase can be used for the hydrolysis of chitin/chitosan to depolymerized products and in the formulation of biocontrol agents for enhanced entomotoxicity levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号