首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Ketopantoate reductase (KPR, EC 1.1.1.169) catalyzes the NADPH-dependent reduction of ketopantoate to pantoate, an essential step for the biosynthesis of pantothenate (vitamin B5). Inhibitors of the enzymes of this pathway have been proposed as potential antibiotics or herbicides. Here we present the crystal structure of Escherichia coli KPR in a precatalytic ternary complex with NADP+ and pantoate bound, solved to 2.3 A of resolution. The asymmetric unit contains two protein molecules, each in a ternary complex; however, one is in a more closed conformation than the other. A hinge bending between the N- and C-terminal domains is observed, which triggers the switch of the essential Lys176 to form a key hydrogen bond with the C2 hydroxyl of pantoate. Pantoate forms additional interactions with conserved residues Ser244, Asn98, and Asn180 and with two conservatively varied residues, Asn194 and Asn241. The steady-state kinetics of active site mutants R31A, K72A, N98A, K176A, S244A, and E256A implicate Asn98 as well as Lys176 and Glu256 in the catalytic mechanism. Isothermal titration calorimetry studies with these mutants further demonstrate the importance of Ser244 for substrate binding and of Arg31 and Lys72 for cofactor binding. Further calorimetric studies show that KPR discriminates binding of ketopantoate against pantoate only with NADPH bound. This work provides insights into the roles of active site residues and conformational changes in substrate recognition and catalysis, leading to the proposal of a detailed molecular mechanism for KPR activity.  相似文献   

2.
Divalent metal ions play a critical role in the removal of N-terminal methionine from nascent proteins by methionine aminopeptidase (MetAP). Being an essential enzyme for bacteria, MetAP is an appealing target for the development of novel antibacterial drugs. Although purified enzyme can be activated by several divalent metal ions, the exact metal ion used by MetAP in cells is unknown. Many MetAP inhibitors are highly potent on purified enzyme, but they fail to show significant inhibition of bacterial growth. One possibility for the failure is a disparity of the metal used in activation of purified MetAP and the metal actually used by MetAP inside bacterial cells. Therefore, the challenge is to elucidate the physiologically relevant metal for MetAP and discover MetAP inhibitors that can effectively inhibit cellular MetAP. We have recently discovered MetAP inhibitors with selectivity toward different metalloforms of Escherichia coli MetAP, and with these unique inhibitors, we characterized their inhibition of MetAP enzyme activity in a cellular environment. We observed that only inhibitors that are selective for the Fe(II)-form of MetAP were potent in this assay. Further, we found that only these Fe(II)-form selective inhibitors showed significant inhibition of growth of five E. coli strains and two Bacillus strains. We confirmed their cellular target as MetAP by analysis of N-terminal processed and unprocessed recombinant glutathione S-transferase proteins. Therefore, we conclude that Fe(II) is the likely metal used by MetAP in E. coli and other bacterial cells.  相似文献   

3.
Methionine aminopeptidase (MAP) catalyzes the removal of amino-terminal methionine from proteins. The Escherichia coli map gene encoding this enzyme was cloned; it consists of 264 codons and encodes a monomeric enzyme of 29,333 daltons. In vitro analyses with purified enzyme indicated that MAP is a metallo-oligopeptidase with absolute specificity for the amino-terminal methionine. The methionine residues from the amino-terminal end of the recombinant proteins interleukin-2 (Met-Ala-Pro-IL-2) and ricin A (Met-Ile-Phe-ricin A) could be removed either in vitro with purified MAP enzyme or in vivo in MAP-hyperproducing strains of E. coli. In vitro analyses of the substrate preference of the E. coli MAP indicated that the residues adjacent to the initiation methionine could significantly influence the methionine cleavage process. This conclusion is consistent, in general, with the deduced specificity of the enzyme based on the analysis of known amino-terminal sequences of intracellular proteins (S. Tsunasawa, J. W. Stewart, and F. Sherman, J. Biol. Chem. 260:5382-5391, 1985).  相似文献   

4.
5.
The binding of fructose 6-phosphate, ATP or its nonhydrolyzable analogue adenylyl 5'-(beta,gamma-methylenediphosphonate), ADP, and phosphoenolpyruvate to Escherichia coli phosphofructokinase has been studied by changes in the protein fluorescence and/or equilibrium dialysis. The results lead to the following conclusions: (1) tetrameric phosphofructokinase can bind four ATP but only two fructose-6-phosphate, and this binding occurs without cooperativity; (2) only two conformational states, T and R, with respectively a high and a low fluorescence, seem accessible to phosphofructokinase, which exists as a mixture of one-third R and two-third T states in the absence of ligand; (3) the substrate fructose 6-phosphate and the allosteric activator ADP bind preferentially to the low-fluorescence R state, while the other substrate, ATP [or its nonhydrolyzable analogue adenylyl 5'-(beta,gamma-methylenediphosphonate)], and the allosteric inhibitor phosphoenolpyruvate bind to the high-fluorescence T state; (4) the binding of a given ligand is cooperative, with a Hill coefficient of 2, only when this binding is accompanied by a complete shift from one state to the other; for instance, the binding of the ATP analogue adenylyl 5'-(beta,gamma-methylenediphosphonate) to the T state is cooperative only in the presence of fructose 6-phosphate which favors the R state. This behavior is qualitatively consistent with a concerted transition, but quite different from that described earlier for phosphofructokinase from steady-state activity measurements (Blangy et al., 1968). This discrepancy suggests that the allosteric properties of phosphofructokinase are due in part to ligand binding and in part to the kinetics of the enzymatic reaction.  相似文献   

6.
The chaperone SecB from Escherichia coli is primarily involved in passing precursor proteins into the Sec system via specific interactions with SecA. The crystal structure of SecB from E. coli has been solved to 2.35 A resolution. The structure shows flexibility in the crossover loop and the helix-connecting loop, regions that have been implicated to be part of the SecB substrate-binding site. Moreover conformational variability of Trp36 is observed as well as different loop conformations for the different monomers. Based on this, we speculate that SecB can regulate the access or extent of its hydrophobic substrate-binding site, by modulating the conformation of the crossover loop and the helix-connecting loop. The structure also clearly explains why the tetrameric equilibrium is shifted towards the dimeric state in the mutant SecBCys76Tyr. The buried cysteine residue is crucial for tight packing, and mutations are likely to disrupt the tetramer formation but not the dimer formation.  相似文献   

7.
Methionine aminopeptidase (MetAP) is a promising target for the development of novel antibacterial, antifungal and anticancer therapy. Based on our previous results, catechol derivatives coupled with a thiazole or thiophene moiety showed high potency and selectivity toward the Fe(II)-form of Escherichia coli MetAP, and some of them clearly showed antibacterial activity, indicating that Fe(II) is likely the physiologically relevant metal for MetAP in E. coli and other bacterial cells. To further understand the structure-function relationship of these Fe(II)-form selective MetAP inhibitors, a series of catechol derivatives was designed and synthesized by replacement of the thiazole or thiophene moiety with different five-membered and six-membered heterocycles. Inhibitory activities of these newly synthesized MetAP inhibitors indicate that many five- and six-membered rings can be accommodated by MetAP and potency on the Fe(II)-form can be improved by introducing substitutions on the heterocyles to explore additional interactions with the enzyme. The furan-containing catechols 1113 showed the highest potency at 1 μM on the Fe(II)-form MetAP, and they were also among the best inhibitors for growth inhibition against E. coli AS19 strain. These findings provide useful information for the design and discovery of more effective MetAP inhibitors for therapeutic applications.  相似文献   

8.
9.
Aldehyde dehydrogenases catalyze the oxidation of aldehyde substrates to the corresponding carboxylic acids. Lactaldehyde dehydrogenase from Escherichia coli (aldA gene product, P25553) is an NAD(+)-dependent enzyme implicated in the metabolism of l-fucose and l-rhamnose. During the heterologous expression and purification of taxadiene synthase from the Pacific yew, lactaldehyde dehydrogenase from E. coli was identified as a minor (相似文献   

10.
11.
The gene from Escherichia coli encoding aminopeptidase N (PepN) was subcloned into pET-26b, and PepN was over-expressed in BL21(DE3) E. coli and purified using Q-Sepharose chromatography. This protocol yielded over 17 mg of purified, recombinant PepN per liter of growth culture under optimum conditions. Gel filtration chromatography revealed that recombinant PepN exists as a monomer. MALDI-TOF mass spectra showed that the enzyme has a molecular mass of 98,750 Da, and steady-state kinetic studies revealed that as-isolated, recombinant PepN exhibits a k(cat) of 354 +/- 11s(-1) and a K(m) of 376 +/- 39 microM when using L-alanine-p-nitroanilide as the substrate. Metal analyses demonstrated that as-isolated, recombinant PepN binds 0.5 and <0.1 equivalents of iron and zinc, respectively. The addition of Zn(II) to recombinant PepN inhibits catalytic activity, while the addition of iron causes a slight decrease or no change in activity. Further metal binding studies revealed that recombinant PepN tightly binds 5 equivalents of iron and <0.1 equivalents of Zn(II). By using this over-expression and purification system, E. coli PepN can now be obtained in quantities necessary for structural characterization and possibly inhibitor design efforts.  相似文献   

12.
The Escherichia coli Orf135 protein, a MutT-type enzyme, hydrolyzes mutagenic 2-hydroxy-dATP (2-OH-dATP) and 8-hydroxy-dGTP, in addition to dCTP and 5-methyl-dCTP, and its deficiency causes increases in both the spontaneous and H(2)O(2)-induced mutation frequencies. To identify the amino acid residues that interact with these nucleotides, the Glu-33, Arg-72, Arg-77, and Asp-118 residues of Orf135, which are candidates for residues interacting with the base, were substituted, and the enzymatic activities of these mutant proteins were examined. The mutant proteins with a substitution at the 33rd, 72nd, and 118th amino acid residues displayed activities affected to various degrees for each substrate, suggesting the involvement of these residues in substrate binding. On the other hand, the mutant protein with a substitution at the 77th Arg residue had activitiy similar to that of the wild-type protein, excluding the possibility that this Arg side chain is involved in base recognition. In addition, the expression of some Orf135 mutants in orf135(-) E. coli reduced the level of formation of rpoB mutants elicited by H(2)O(2). These results reveal the residues involved in the substrate binding of the E. coli Orf135 protein.  相似文献   

13.
In order to gain insight into the mechanistic role of a flexible exterior loop near the active site, made up of Y62, H63, G64, and Y65, that has been proposed to play an important role in substrate binding and recognition in the methionyl aminopeptidase from Escherichia coli (EcMetAP-I), the H63A enzyme was prepared. Mutation of H63 to alanine does not affect the ability of the enzyme to bind divalent metal ions. The specific activity of H63A EcMetAP-I was determined using four different substrates of varying lengths, namely, l-Met-p-NA, MAS, MGMM and MSSHRWDW. For the smallest/shortest substrate (l-Met-p-NA) the specific activity decreased nearly seven fold but as the peptide length increased, the specific activity also increased and became comparable to WT EcMetAP-I. This decrease in specific activity is primarily due to a decrease in the observed k(cat) values, which decreases nearly sixty-fold for l-Met-p-NA while only a four-fold decrease is observed for the tri- and tetra-peptide substrates. Interestingly, no change in k(cat) was observed when the octa-peptide MSSHRWDW was used as a substrate. These data suggest that H63 affects the hydrolysis of small peptide substrates whereas large peptides can overcome the observed loss in binding energy, as predicted from K(m) values, by additional hydrophilic and hydrophobic interactions.  相似文献   

14.
Threonine synthase, which is a PLP-dependent enzyme, catalyzes the beta,gamma-replacement reaction of l-homoserine phosphate to yield threonine and inorganic phosphate. The three-dimensional structures of the enzyme from Thermus thermophilus HB8 in its unliganded form and complexed with the substrate analogue 2-amino-5-phosphonopentanoic acid have been determined at 2.15 and 2.0 A resolution, respectively. The complexed form, assigned as an enamine, uncovered the interactions of the cofactor-analogue conjugate with the active site residues. The binding of the substrate analogue induces a large conformational change at the domain level. The small domain rotates by about 25 degrees and approaches the large domain to close the active site. The complicated catalytic process of the enzyme has been elucidated based on the complex structure to reveal the stereochemistry of the reaction and to present the released inorganic phosphate as a possible catalyst to carry a proton to the Cgamma atom of the substrate.  相似文献   

15.
Crystal structure of unliganded phosphofructokinase from Escherichia coli   总被引:2,自引:0,他引:2  
In an attempt to characterize the mechanism of co-operativity in the allosteric enzyme phosphofructokinase from Escherichia coli, crystals were grown in the absence of activating ligands. The crystal structure was determined to a resolution of 2.4 A by the method of molecular replacement, using the known structure of the liganded active state as a starting model, and has been refined to a crystallographic R-factor of 0.168 for all data. Although the crystallization solution would be expected to contain the enzyme in its inactive conformation, with a low affinity for the co-operative substrate fructose 6-phosphate, the structure in these crystals does not show the change in quaternary structure seen in the inactive form of the Bacillus stearothermophilus enzyme (previously determined at low resolution), nor does it show any substantial change in the fructose 6-phosphate site from the structure seen in the liganded form. Compared to the liganded form, there are considerable changes around the allosteric effector site, including the disordering of the last 19 residues of the chain. It seems likely that the observed conformation corresponds an active unliganded form, in which the absence of ligand in the effector site induces structural changes that spread through much of the subunit, but cause only minor changes in the active site. It is not clear why the crystals should contain the enzyme in a high-affinity conformation, which presumably represents only a small fraction of the molecules in the crystallizing solution. However, this structure does identify the conformational changes involved in binding of the allosteric effectors.  相似文献   

16.
D-Serine dehydratase from Escherichia coli is a member of the β-family (fold-type II) of the pyridoxal 5'-phosphate-dependent enzymes, catalyzing the conversion of D-serine to pyruvate and ammonia. The crystal structure of monomeric D-serine dehydratase has been solved to 1.97?-resolution for an orthorhombic data set by molecular replacement. In addition, the structure was refined in a monoclinic data set to 1.55? resolution. The structure of DSD reveals a larger pyridoxal 5'-phosphate-binding domain and a smaller domain. The active site of DSD is very similar to those of the other members of the β-family. Lys118 forms the Schiff base to PLP, the cofactor phosphate group is liganded to a tetraglycine cluster Gly279-Gly283, and the 3-hydroxyl group of PLP is liganded to Asn170 and N1 to Thr424, respectively. In the closed conformation the movement of the small domain blocks the entrance to active site of DSD. The domain movement plays an important role in the formation of the substrate recognition site and the catalysis of the enzyme. Modeling of D-serine into the active site of DSD suggests that the hydroxyl group of D-serine is coordinated to the carboxyl group of Asp238. The carboxyl oxygen of D-serine is coordinated to the hydroxyl group of Ser167 and the amide group of Leu171 (O1), whereas the O2 of the carboxyl group of D-serine is hydrogen-bonded to the hydroxyl group of Ser167 and the amide group of Thr168. A catalytic mechanism very similar to that proposed for L-serine dehydratase is discussed.  相似文献   

17.
The Escherichia coli periplasmic dipeptide binding protein functions in both peptide transport and taxis toward peptides. The structure of the dipeptide binding protein in complex with Gly-Leu (glycyl-L-leucine) has been determined at 3.2 A resolution. The binding site for dipeptides is designed to recognize the ligand's backbone while providing space to accommodate a variety of side chains. Some repositioning of protein side chains lining the binding site must occur when the dipeptide's second residue is larger than leucine. The protein's fold is very similar to that of the Salmonella typhimurium oligopeptide binding protein, and a comparison of the structures reveals the structural basis for the dipeptide binding protein's preference for shorter peptides.  相似文献   

18.
BACKGROUND: Peptide methionine sulphoxide reductases catalyze the reduction of oxidized methionine residues in proteins. They are implicated in the defense of organisms against oxidative stress and in the regulation of processes involving peptide methionine oxidation/reduction. These enzymes are found in numerous organisms, from bacteria to mammals and plants. Their primary structure shows no significant similarity to any other known protein. RESULTS: The X-ray structure of the peptide methionine sulphoxide reductase from Escherichia coli was determined at 3 A resolution by the multiple wavelength anomalous dispersion method for the selenomethionine-substituted enzyme, and it was refined to 1.9 A resolution for the native enzyme. The 23 kDa protein is folded into an alpha/beta roll and contains a large proportion of coils. Among the three cysteine residues involved in the catalytic mechanism, Cys-51 is positioned at the N terminus of an alpha helix, in a solvent-exposed area composed of highly conserved amino acids. The two others, Cys-198 and Cys-206, are located in the C-terminal coil. CONCLUSIONS: Sequence alignments show that the overall fold of the peptide methionine sulphoxide reductase from E. coli is likely to be conserved in many species. The characteristics observed in the Cys-51 environment are in agreement with the expected accessibility of the active site of an enzyme that reduces methionine sulphoxides in various proteins. Cys-51 could be activated by the influence of an alpha helix dipole. The involvement of the two other cysteine residues in the catalytic mechanism requires a movement of the C-terminal coil. Several conserved amino acids and water molecules are discussed as potential participants in the reaction.  相似文献   

19.
Methionine aminopeptidase (MetAP) is a promising target for development of novel antibacterial, antifungal and anticancer agents. However, its physiologically relevant metal ion remains to be defined, and its inhibitors need to inhibit the in vivo metalloform. Based on the Mn(II)-form-selective inhibitors discovered by high throughput screening as leads, a series of analogs of 5-phenylfuran-2-carboxylic acid was prepared and subsequently evaluated on Co(II)-, Mn(II)-, Ni(II)-, and Fe(II)-forms of Escherichia coli MetAP, in order to define the structural elements responsible for their inhibitory potency and metalloform selectivity. Various substitutions on the phenyl ring changed their potency on the Mn(II)-form but not their metalloform selectivity. We conclude that the preferential coordination of the carboxyl group to Mn(II) ions is the major determinant for their superb selectivity toward the Mn(II)-form. Changing the carboxylate to hydroxamate alters its ability to bind and discriminate different metal ions, and the hydroxamate derivative becomes non-selective among the metalloforms tested.  相似文献   

20.
Crystal structure of the PdxY Protein from Escherichia coli   总被引:1,自引:0,他引:1       下载免费PDF全文
The crystal structure of Escherichia coli PdxY, the protein product of the pdxY gene, has been determined to a 2.2-A resolution. PdxY is a member of the ribokinase superfamily of enzymes and has sequence homology with pyridoxal kinases that phosphorylate pyridoxal at the C-5' hydroxyl. The protein is a homodimer with an active site on each monomer composed of residues that come exclusively from each respective subunit. The active site is filled with a density that fits that of pyridoxal. In monomer A, the ligand appears to be covalently attached to Cys122 as a thiohemiacetal, while in monomer B it is not covalently attached but appears to be partially present as pyridoxal 5'-phosphate. The presence of pyridoxal phosphate and pyridoxal as ligands was confirmed by the activation of aposerine hydroxymethyltransferase after release of the ligand by the denaturation of PdxY. The ligand, which appears to be covalently attached to Cys122, does not dissociate after denaturation of the protein. A detailed comparison (of functional properties, sequence homology, active site and ATP-binding-site residues, and active site flap types) of PdxY with other pyridoxal kinases as well as the ribokinase superfamily in general suggested that PdxY is a member of a new subclass of the ribokinase superfamily. The structure of PdxY also permitted an interpretation of work that was previously published about this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号