首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that the calcitonin (CT)-encoding exon 4 of the human calcitonin/calcitonin gene-related peptide I (CGRP-I) gene (CALC-I gene) is surrounded by suboptimal processing sites. At the 5' end of exon 4 a weak 3' splice site is present because of an unusual branch acceptor nucleotide (U) and a weak poly(A) site is present at the 3' end of exon 4. For CT-specific RNA processing two different exon enhancer elements, A and B, located within exon 4 are required. In this study we have investigated the cooperation of these elements in CT exon recognition and inclusion by transient transfection into 293 cells of CALC-I minigene constructs. Improvement of the strength of the 3' splice site in front of exon 4 by the branchpoint mutation U-->A reduces the requirement for the presence of exon enhancer elements within exon 4 for CT-specific RNA processing, irrespective of the length of exon 4. Replacement of the exon 4 poly(A) site with a 5' splice site does not result in CT exon recognition, unless also one or more exon enhancer elements and/or the branchpoint mutation U-->A in front of exon 4 are present. This indicates that terminal and internal exons are recognised in a similar fashion. The number of additional enhancing elements that are required for CT exon recognition depends on the strength of the 5' splice site. Deletion of a large part of intron 4 also leads to partial exon 4 skipping. All these different elements contribute to CT exon recognition and inclusion. The CT exon is recognised as a whole entity and the sum of the strengths of the different elements determines recognition as an exon. Curiously, in one of our constructs a 5' splice site at the end of exon 4 is either ignored by the splicing machinery of the cell or recognised as a splice donor or as a splice acceptor site.  相似文献   

2.
The pre-mRNA encoding calcitonin (CT) and calcitonin gene-related peptide (CGRP) is differentially processed in a tissue-specific fashion to include or exclude the calcitonin-specific exon 4. A minigene containing a viral first exon and exons 4, 5, and 6 from the human CT/CGRP gene was correctly processed in transfected HeLa or F9 teratocarcinoma cells to produce mRNA that included or excluded exon 4, respectively. This processing decision could be reproduced in vitro using nuclear extracts from these two cell lines and an RNA precursor from a similar minigene. Supplementation of extract from HeLa cells with extract from F9 cells resulted in the F9 splicing pattern in which exon 4 was excluded. This model system may be useful for the purification of splicing factors important in the regulation of this splice choice.  相似文献   

3.
Regulation of Alternative Polyadenylation by U1 snRNPs and SRp20   总被引:16,自引:4,他引:12       下载免费PDF全文
Although considerable information is currently available about the factors involved in constitutive vertebrate polyadenylation, the factors and mechanisms involved in facilitating communication between polyadenylation and splicing are largely unknown. Even less is known about the regulation of polyadenylation in genes in which 3′-terminal exons are alternatively recognized. Here we demonstrate that an SR protein, SRp20, affects recognition of an alternative 3′-terminal exon via an effect on the efficiency of binding of a polyadenylation factor to an alternative polyadenylation site. The gene under study codes for the peptides calcitonin and calcitonin gene-related peptide. Its pre-mRNA is alternatively processed by the tissue-specific inclusion or exclusion of an embedded 3′-terminal exon, exon 4, via factors binding to an intronic enhancer element that contains both 3′ and 5′ splice site consensus sequence elements. In cell types that preferentially exclude exon 4, addition of wild-type SRp20 enhances exon 4 inclusion via recognition of the intronic enhancer. In contrast, in cell types that preferentially include exon 4, addition of a mutant form of SRp20 containing the RNA-binding domain but missing the SR domain inhibits exon 4 inclusion. Inhibition is likely at the level of polyadenylation, because the mutant SRp20 inhibits binding of CstF to the exon 4 poly(A) site. This is the first demonstration that an SR protein can influence alternative polyadenylation and suggests that this family of proteins may play a role in recognition of 3′-terminal exons and perhaps in the communication between polyadenylation and splicing.  相似文献   

4.
Two classes of spliceosome are present in eukaryotic cells. Most introns in nuclear pre-mRNAs are removed by a spliceosome that requires U1, U2, U4, U5, and U6 small nuclear ribonucleoprotein particles (snRNPs). A minor class of introns are removed by a spliceosome containing U11, U12, U5, U4atac, and U6 atac snRNPs. We describe experiments that demonstrate that splicing of exon 5 of the rat calcitonin/CGRP gene requires both U2 snRNA and U12 snRNA. In vitro, splicing to calcitonin/ CGRP exon 5 RNA was dependent on U2 snRNA, as preincubation of nuclear extract with an oligonucleotide complementary to U2 snRNA abolished exon 5 splicing. Addition of an oligonucleotide complementary to U12 snRNA increased splicing at a cryptic splice site in exon 5 from <5% to 50% of total spliced RNA. Point mutations in a candidate U12 branch sequence in calcitonin/CGRP intron 4, predicted to decrease U12-pre-mRNA base-pairing, also significantly increased cryptic splicing in vitro. Calcitonin/CGRP genes containing base changes disrupting the U12 branch sequence expressed significantly decreased CGRP mRNA levels when expressed in cultured cells. Coexpression of U12 snRNAs containing base changes predicted to restore U12-pre-mRNA base pairing increased CGRP mRNA synthesis to the level of the wild-type gene. These observations indicate that accurate, efficient splicing of calcitonin/CGRP exon 5 is dependent upon both U2 and U12 snRNAs.  相似文献   

5.
A third human CALC (pseudo)gene on chromosome 11   总被引:2,自引:0,他引:2  
A genomic locus in man (CALC-III) containing nucleotide sequences highly homologous to both exon 2 and exon 3 of the CALC-I and -II genes, is described in this paper. The CALC-I gene produces calcitonin (CT) (encoded by exon 4) or calcitonin gene-related peptide (CGRP) (encoded by exon 5) in a tissue-specific fashion. The CALC-II gene produces a second human CGRP, but probably not a second CT. The CALC-III gene does not seem to encode a CT- or CGRP-related polypeptide hormone and is probably a pseudogene. Like the other two CALC genes, the CALC-III gene is located on human chromosome 11.  相似文献   

6.
Calcitonin exon sequences influence alternative RNA processing   总被引:6,自引:0,他引:6  
The pre-mRNA encoding calcitonin (CT) and CT gene-related peptide (CGRP) is differentially processed in a tissue-specific fashion to include exon 4 (which encodes CT) or exclude this exon and splice to exon 5 (which encodes CGRP). We have used a CT-specific in vitro RNA-processing system to identify cis-acting sequences required to prevent splicing to exon 5. Deletion mapping demonstrated the presence of an element within the first 45 nucleotides of the CT-specific exon 4 that was required to suppress splicing to the CGRP-specific exon 5. This element was able to function in a completely heterologous system to suppress splicing when the CGRP exon was replaced with a constitutive viral exon. The element was unable to suppress splicing in the absence of a proximal CT-specific 3' splice site. Our results suggest that CT-specific splicing requires assisted recognition of its 3' splice site.  相似文献   

7.
8.
The calcitonin/calcitonin gene-related peptide (CGRP) pre-mRNA is alternatively processed in a tissue-specific manner leading to the production of calcitonin mRNA in thyroid C cells and CGRP mRNA in neurons. Sequences in the human calcitonin-specific fourth exon function as an exonic splice enhancer (ESE) which is required for incorporation of exon 4 into calcitonin mRNA. Deletion of these sequences from the rat calcitonin/CGRP gene was reported to have no effect on calcitonin splicing. We demonstrate that sequences in the rat calcitonin/CGRP fourth exon act as an ESE. In addition, we observed that three proteins in HeLa nuclear extract, of apparent molecular weights of 40, 55 and 85 kDa, specifically interact with the exon 4 ESE. The 40-kDa protein is human transformer 2beta (hTra2beta), a homolog of the Drosophila splice regulator transformer 2. hTra2beta is required for calcitonin splicing in vitro, one of the first biological functions identified for hTra2beta. The 55-kDa protein is SRp55, a member of the SR family of phosphoproteins. Binding of SRp55 to an ESE required for calcitonin mRNA splicing suggests that the different levels of SRp55 present in different cell types may regulate calcitonin/CGRP alternative splicing.  相似文献   

9.
Exons 6A and 6B of the chicken beta-tropomyosin gene are mutually exclusive and selected in a tissue-specific manner. Exon 6A is present in non-muscle and smooth muscle cells, while exon 6B is present in skeletal muscle cells. In this study we have investigated the mechanism underlying exon 6A recognition in non-muscle cells. Previous reports have identified a pyrimidine-rich intronic enhancer sequence (S4) downstream of exon 6A as essential for exon 6A 5'-splice site recognition. We show here that preincubation of HeLa cell extracts with an excess of RNA containing this sequence specifically inhibits exon 6A recognition by the splicing machinery. Splicing inhibition by an excess of this RNA can be rescued by addition of the SR protein ASF/SF2, but not by the SR proteins SC35 or 9G8. ASF/SF2 stimulates exon 6A splicing through specific interaction with the enhancer sequence. Surprisingly, SC35 behaves as an inhibitor of exon 6A splicing, since addition to HeLa nuclear extracts of increasing amounts of the SC35 protein completely abolish the stimulatory effect of ASF/SF2 on exon 6A splicing. We conclude that exon 6A recognition in vitro depends on the ratio of the ASF/SF2 to SC35 SR proteins. Taken together our results suggest that variations in the level or activity of these proteins could contribute to the tissue-specific choice of beta-tropomyosin exon 6A. In support of this we show that SR proteins isolated from skeletal muscle tissues are less efficient for exon 6A stimulation than SR proteins isolated from HeLa cells.  相似文献   

10.
11.
12.
13.
Variations in a polymorphic (TG)m sequence near exon 9 of the human CFTR gene have been associated with variable proportions of exon skipping and occurrence of disease. We have recently identified nuclear factor TDP-43 as a novel splicing regulator capable of binding to this element in the CFTR pre-mRNA and inhibiting recognition of the neighboring exon. In this study we report the dissection of the RNA binding properties of TDP-43 and their functional implications in relationship with the splicing process. Our results show that this protein contains two fully functional RNA recognition motif (RRM) domains with distinct RNA/DNA binding characteristics. Interestingly, TDP-43 can bind a minimum number of six UG (or TG) single-stranded dinucleotide stretches, and binding affinity increases with the number of repeats. In particular, the highly conserved Phe residues in the first RRM region play a key role in nucleic acid recognition.  相似文献   

14.
We have investigated the RNA structure of the region surrounding the muscle-specific exon 6B of the chicken beta-tropomyosin gene. We have used a variety of chemical and enzymatic probes: dimethylsulfate, N-cyclohexyl-N'-(2-(N-methylmorpholino)-ethyl)-carbodiimide-p-tolu enesulfonate) , RNase T1 and RNase V1. Lead acetate was also used to obtain some information on the tertiary structure of this region. Probing the wild-type sequence suggests a model involving one-stem and three-stem-loop structures in and around this exon. Two of these, hairpin I and stem III, have previously been implicated in repression of splicing of the intron following exon 6B in a HeLa nuclear extract. Stem I includes sequences at the beginning of exon 6B and stem III results from interaction of the intron upstream from exon 6B with sequences in the middle of the intron downstream from this exon (the intron whose splicing is repressed). Neither stem I nor stem III directly involves the consensus sequences (5' splice site, branch-point, 3' splice site) of the repressed intron. Probing RNAs that are derepressed for splicing of this intron show that there are structural changes around the 5' splice site and branch-point sequence that correlate with the derepression. This is true, despite the fact that the derepressed RNAs are altered in a region far from these consensus sequences. The most striking structural correlation with splicing capacity of the intron downstream from exon 6B is seen by probing with lead acetate. Lead ions cut RNA at specific residues; these sites are very sensitive to RNA tertiary structure. Repressed and derepressed RNAs show entirely different cleavage patterns after incubation with lead acetate. Remarkably, hybridizing a derepressed RNA with an RNA comprising the ascending arm of stem III not only re-establishes repression, but also converts the pattern of susceptibility to attack by lead ions over the whole molecule. We suggest that RNA conformation plays a role in keeping exon 6B from being spliced into non-muscle cell mRNA.  相似文献   

15.
16.
The cardiac troponin T pre-mRNA contains an exonic splicing enhancer that is required for inclusion of the alternative exon 5. Here we show that enhancer activity is exquisitely sensitive to changes in the sequence of a 9-nucleotide motif (GAGGAAGAA) even when its purine content is preserved. A series of mutations that increased or decreased the level of exon inclusion in vivo were used to correlate enhancer strength with RNA-protein interactions in vitro. Analyses involving UV cross-linking and immunoprecipitation indicated that only four (SRp30a, SRp40, SRp55, and SRp75) of six essential splicing factors known as SR proteins bind to the active enhancer RNA. Moreover, purified SRp40 and SRp55 activate splicing of exon 5 when added to a splicing-deficient S100 extract. Purified SRp30b did not stimulate splicing in S100 extracts, which is consistent with its failure to bind the enhancer RNA. In vitro competition of SR protein splicing activity and UV cross-linking demonstrated that the sequence determinants for SR protein binding were precisely coincident with the sequence determinants of enhancer strength. Thus, a subset of SR proteins interacts directly with the exonic enhancer to promote inclusion of a poorly defined alternative exon. Independent regulation of the levels of SR proteins may, therefore, contribute to the developmental regulation of exon inclusion.  相似文献   

17.
18.
The interphotoreceptor retinoid-binding protein (IRBP) is limited in expression to retinal photoreceptor cells and a subset of pinealocytes. We have obtained a genomic clone containing the entire coding region and 7 kb of 5' flanking sequence. As a first step in studying IRBP gene regulation we have examined the CpG methylation patterns of the entire IRBP gene in expressing and non-expressing human cells. This has been done by isolation of high molecular weight DNA from Y-79 cells grown in suspension or attached to poly-D-lysine, which synthesize IRBP at different levels, and from human lymphocytes, which were shown by northern analysis to lack IRBP message. The DNA was digested by either Hpa II, Msp I, or Hha I. Southern blots were prepared with these digests and hybridized with probes made from fragments covering the complete genomic clone. Probes from the first exon, the introns and the 3' end gave banding patterns which showed no differences between the expressing cells and the lymphocytes. A probe from the very 5' end did not give a clear banding pattern, probably due to the presence of repetitive elements in the probe. However, a Hind III probe covering the 5' flanking 3 kb and the beginning of the first exon hybridized with a 1.8 kb band in Hpa II digests of Y-79 cells which was not present in Hpa II digests of lymphocyte DNA. In addition, a 2.1-2.3 kb Hha I band was found only in the Y-79 DNA digests. Sequence analysis of the promoter region indicated that these bands were due to hypomethylation of sites within a CpG rich island from -1578 to -1108 in the promoter and hypomethylation of sites in the beginning of the first exon. A Hha I site between the CpG island and the first exon was not hypomethylated in the expressing Y-79 cells. We propose that hypomethylation of the CpG rich island of the IRBP promoter and the first exon is linked to the expression of this gene.  相似文献   

19.
Polypyrimidine tract-binding protein (PTB) is an abundant vertebrate hnRNP protein. PTB binding sites have been found within introns both upstream and downstream of alternative exons in a number of genes that are negatively controlled by the binding of PTB. We have previously reported that PTB binds to a pyrimidine tract within an RNA processing enhancer located adjacent to an alternative 3′-terminal exon within the gene coding for calcitonin and calcitonin gene-related peptide. The enhancer consists of a pyrimidine tract and CAG directly abutting on a 5′ splice site sequence to form a pseudoexon. Here we show that the binding of PTB to the enhancer pyrimidine tract is functional in that exon inclusion increases when in vivo levels of PTB increase. This is the first example of positive regulation of exon inclusion by PTB. The binding of PTB was antagonistic to the binding of U2AF to the enhancer-located pyrimidine tract. Altering the enhancer pyrimidine tract to a consensus sequence for the binding of U2AF eliminated enhancement of exon inclusion in vivo and exon polyadenylation in vitro. An additional PTB binding site was identified close to the AAUAAA hexanucleotide sequence of the exon 4 poly(A) site. These observations suggest a dual role for PTB in facilitating recognition of exon 4: binding to the enhancer pyrimidine tract to interrupt productive recognition of the enhancer pseudoexon by splicing factors and interacting with the poly(A) site to positively affect polyadenylation.  相似文献   

20.
The fibroblast growth factor receptor (FGFR)-2 gene contains two mutually exclusive exons, K-SAM and BEK. We made a cell line designed to become drug-resistant on repression of BEK exon splicing. One drug-resistant derivative of this line carried an insertion within the BEK exon of a sequence containing at least two independent splicing silencers. One silencer was a pyrimidine-rich sequence, which markedly increased binding of polypyrimidine tract-binding protein to the BEK exon. The BEK exon binds to polypyrimidine tract-binding protein even in the silencer's absence. Several exonic pyrimidine runs are required for this binding, and they are also required for overexpression of polypyrimidine tract-binding protein to repress BEK exon splicing. These results show that binding of polypyrimidine tract-binding protein to exon sequences can repress splicing. In epithelial cells, the K-SAM exon is spliced in preference to the BEK exon, whose splicing is repressed. Mutation of the BEK exon pyrimidine runs decreases this repression. If this mutation is combined with the deletion of a sequence in the intron upstream from the BEK exon, a complete switch from K-SAM to BEK exon splicing ensues. Binding of polypyrimidine tract binding protein to the BEK exon thus participates in the K-SAM/BEK alternative splicing choice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号