首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Overproduction of FtsZ induces minicell formation in E. coli   总被引:68,自引:0,他引:68  
J E Ward  J Lutkenhaus 《Cell》1985,42(3):941-949
The ftsZ gene in E. coli K-12 is an essential cell division gene. We report that a two to sevenfold increase in the level of the FtsZ protein resulted in induction of the minicell phenotype. An increase in the level of FtsZ beyond this range resulted in an inhibition of all cell division. Unlike the classical minicell mutant, the formation of minicells induced by increased levels of FtsZ did not occur at the expense of normal divisions, indicating that increasing FtsZ resulted in additional division events per cell cycle. In addition, increased FtsZ caused cell division to be initiated earlier in the cell cycle. These results are consistent with the level or activity of FtsZ controlling the frequency of cell division in E. coli.  相似文献   

2.
Interaction between the min locus and ftsZ.   总被引:25,自引:16,他引:9       下载免费PDF全文
In Escherichia coli, distinct but similar minicell phenotypes resulting from mutation at the minB locus and increased expression of ftsZ suggested a possible interaction between these genes. A four- to fivefold increase in FtsZ resulting from increased gene dosage was found to suppress the lethality of minCD expressed from the lac promoter. Since increased MinCD did not affect the level of FtsZ, this suggested that MinCD may antagonize FtsZ to inhibit its cell division activity. This possibility was supported by the finding that alleles of ftsZ isolated as resistant to the cell division inhibitor SulA were also resistant to MinCD. Among the ftsZ(Rsa) alleles, two appeared to be completely resistant to MinCD as demonstrated by the lack of an effect of MinCD on cell length and a minicell phenotype observed in the absence of a significant increase in FtsZ. It was shown that SulA inhibits cell division independently of MinCD.  相似文献   

3.
Escherichia coli Div 124(ts) is a conditional-lethal cell division mutant formed from a cross between a mutant that produces polar anucleated minicells and a temperature-sensitive cell division mutant affected in a stage of cross-wall synthesis. Under permissive growth temperature (30 C), Div 124(ts) grows and produces normal progeny cells and anucleated minicells from its polar ends. When transferred to nonpermissive growth temperature (42 C), growth and macromolecular synthesis continue, but cell division and minicell formation are inhibited. Growth at 42 C results in formation of filamentous cells showing some constrictions along the length of the filaments. Return of the filaments from 42 to 30 C results in cell division and minicell formation in association with the constrictions and other areas along the length of the filaments. This gives rise to a "necklace-type" array of cells and minicells. Recovery of cell division is observed after a lag and is followed by a burst in cell division and finally by a return to the normal growth characteristic of 30 C cultures. Recovery of cell division takes place in the presence of chloramphenicol or nalidixic acid when these are added at the time of shift from 42 to 30 C, and indicates that a division potential for filament fragmentation is accumulated while the cells are at 42 C. This division potential is used for the production of both minicells and cells of normal length. The conditional-lethal temperature sensitive mutation controls a step(s) in cross-wall synthesis common to cell division and minicell formation.  相似文献   

4.
Immunoelectron microscopy was used to assess the effects of inhibitors of cell division on formation of the FtsZ ring in Escherichia coli. Induction of the cell division inhibitor SulA, a component of the SOS response, or the inhibitor MinCD, a component of the min system, blocked formation of the FtsZ ring and led to filamentation. Reversal of SulA inhibition by blocking protein synthesis in SulA-induced filaments led to a resumption of FtsZ ring formation and division. These results suggested that these inhibitors block cell division by preventing FtsZ localization into the ring structure. In addition, analysis of min mutants demonstrated that FtsZ ring formation was also associated with minicell formation, indicating that all septation events in E. coli involve the FtsZ ring.  相似文献   

5.
In Escherichia coli the Z ring has the potential to assemble anywhere along the cell length but is restricted to midcell by the action of negative regulatory systems, including Min. In the current model for the Min system, the MinC/MinD division inhibitory complex is evenly distributed on the membrane and can disrupt Z rings anywhere in the cell; however, MinE spatially regulates MinC/MinD by restricting it to the cell poles, thus allowing Z ring formation at midcell. This model assumes that Z rings formed at different cellular locations have equal sensitivity to MinC/MinD in the absence of MinE. However, here we report evidence that differences in MinC/MinD sensitivity between polar and nonpolar Z rings exists even when there is no MinE. MinC/MinD at proper levels is able to block minicell production in Δmin strains without increasing the cell length, indicating that polar Z rings are preferentially blocked. In the FtsZ-I374V strain (which is resistant to MinC(C)/MinD), wild-type morphology can be easily achieved with MinC/MinD in the absence of MinE. We also show that MinC/MinD at proper levels can rescue the lethal phenotype of a min slmA double deletion mutant, which we think is due to the elimination of polar Z rings (or FtsZ structures), which frees up FtsZ molecules for assembly of Z rings at internal sites to rescue division and growth. Taken together, these data indicate that polar Z rings are more susceptible to MinC/MinD than internal Z rings, even when MinE is absent.  相似文献   

6.
To investigate the interaction between FtsZ and the Min system during cell division of Escherichia coli, we examined the effects of combining a well-known thermosensitive mutation of ftsZ, ftsZ84, with DeltaminCDE, a deletion of the entire min locus. Because the Min system is thought to down-regulate Z-ring assembly, the prediction was that removing minCDE might at least partially suppress the thermosensitivity of ftsZ84, which can form colonies below 42 degrees C but not at or above 42 degrees C. Contrary to expectations, the double mutant was significantly more thermosensitive than the ftsZ84 single mutant. When shifted to the new lower nonpermissive temperature, the double mutant formed long filaments mostly devoid of Z rings, suggesting a likely cause of the increased thermosensitivity. Interestingly, even at 22 degrees C, many Z rings were missing in the double mutant, and the rings that were present were predominantly at the cell poles. Of these, a large number were present only at one pole. These cells exhibited a higher than expected incidence of polar divisions, with a bias toward the newest pole. Moreover, some cells exhibited dramatically elongated septa that stained for FtsZ, suggesting that the double mutant is defective in Z-ring disassembly, and providing a possible mechanism for the polar bias. Thermoresistant suppressors of the double mutant arose that had modestly increased levels of FtsZ84. These cells also exhibited elongated septa and, in addition, produced a high frequency of branched cells. A thermoresistant suppressor of the ftsZ84 single mutant also synthesized more FtsZ84 and produced branched cells. The evidence from this study indicates that removing the Min system exposes and exacerbates the inherent defects of the FtsZ84 protein, resulting in clear septation phenotypes even at low growth temperatures. Increasing levels of FtsZ84 can suppress some, but not all, of these phenotypes.  相似文献   

7.
8.
Cell division in Escherichia coli minB mutants   总被引:8,自引:0,他引:8  
In Escherichia coli minB mutants, cell division can take place at the cell poles as well as non-polarly in the cell. We have examined growth, division patterns, and nucleoid distribution in individual cells of a minC point mutant and a minB deletion mutant, and compared them to the corresponding wild-type strain and an intR1 strain in which the chromosome is over-replicated. The main findings were as follows. In the minB mutants, polar and non-polar divisions appeared to occur independently of each other. Furthermore, the timing of cell division in the cell cycle was found to be severely affected. In addition, nucleoid conformation and distribution were considerably disturbed. The results obtained call for a re-evaluation of the role of the MinB system in the E. coli cell cycle, and of the concept that limiting quanta of cell division factors are regularly produced during the cell cycle.  相似文献   

9.
When the filamentous cyanobacterium Anabaena PCC 7120 is exposed to combined nitrogen starvation, 5 to 10% of the cells along each filament at semiregular intervals differentiate into heterocysts specialized in nitrogen fixation. Heterocysts are terminally differentiated cells in which the major cell division protein FtsZ is undetectable. In this report, we provide molecular evidence indicating that cell division is necessary for heterocyst development. FtsZ, which is translationally fused to the green fluorescent protein (GFP) as a reporter, is found to form a ring structure at the mid-cell position. SulA from Escherichia coli inhibits the GTPase activity of FtsZ in vitro and prevents the formation of FtsZ rings when expressed in Anabaena PCC 7120. The expression of sulA arrests cell division and suppresses heterocyst differentiation completely. The antibiotic aztreonam, which is targeted to the FtsI protein necessary for septum formation, has similar effects on both cell division and heterocyst differentiation, although in this case, the FtsZ ring is still formed. Therefore, heterocyst differentiation is coupled to cell division but independent of the formation of the FtsZ ring. Consistently, once the inhibitory pressure of cell division is removed, cell division should take place first before heterocyst differentiation resumes at a normal frequency. The arrest of cell division does not affect the accumulation of 2-oxoglutarate, which triggers heterocyst differentiation. Consistently, a nonmetabolizable analogue of 2-oxoglutarate does not rescue the failure of heterocyst differentiation when cell division is blocked. These results suggest that the control of heterocyst differentiation by cell division is independent of the 2-oxoglutarate signal.  相似文献   

10.
The Fts proteins play an important role in the control of cell division in Escherichia coli. These proteins, which possibly form a functional complex, are encoded by genes that form an operon. In this study, we examined the properties of the temperature-sensitive mutation ftsZ84 harbored by low- or high-copy-number plasmids. Cells of strain AB1157, which had the ftsZ84 mutation, did not form colonies on salt-free L agar at 30 degrees C. When a low-copy-number plasmid containing the ftsZ84 mutation was present in these mutant cells, colony formation was restored on this medium at 30 degrees C, suggesting that FtsZ84 is probably less active than the wild-type protein and is therefore limiting in its capacity to trigger cell divisions. On the other hand, when the ftsZ84 mutation was harbored by the high-copy-number plasmid pBR325, colony formation was prevented on salt-free L agar plates whether the recipients were ftsZ84 mutant or parental cells, suggesting that, at high levels, FtsZ84 acts as a division inhibitor. The fact that colony formation was also prevented at 42 degrees C indicates that the FtsZ84 protein is not inactivated at the nonpermissive temperature. The possibility that FtsZ84 is a more efficient division inhibitor than the wild-type FtsZ is discussed. Evidence is also presented showing that a gene adjacent to mutT codes for a product that, under certain conditions, suppresses the ftsZ84 mutation.  相似文献   

11.
In this report, we have investigated cell division after inhibition of initiation of chromosome replication in Escherichia coli. In a culture grown to the stationary phase, cells containing more than one chromosome were able to divide some time after restart of growth, under conditions not allowing initiation of chromosome replication. This shows that there is no requirement for cell division to take place within a certain time after initiation of chromosome replication. Continued growth without initiation of replication resulted in filamented cells that generally did not have any constrictions. Interestingly, FtsZ rings were formed in a majority of these cells as they reached a certain cell length. These rings appeared and were maintained for some time at the cell quarter positions on both sides of the centrally localized nucleoid. These results confirm previous findings that cell division sites are formed independently of chromosome replication and indicate that FtsZ ring assembly is dependent on cell size rather than on the capacity of the cell to divide. Disruption of the mukB gene caused a significant increase in the region occupied by DNA after the replication runout, consistent with a role of MukB in chromosome condensation. The aberrant nucleoid structure was accompanied by a shift in FtsZ ring positioning, indicating an effect of the nucleoid on the positioning of the FtsZ ring. A narrow cell length interval was found, under and over which primarily central and non-central FtsZ rings, respectively, were observed. This finding correlates well with the previously observed oscillatory movement of MinC and MinD in short and long cells.  相似文献   

12.
Interactions among cell division genes in Escherichia coli were investigated by examining the effect on cell division of increasing the expression of the ftsZ, ftsA, or ftsQ genes. We determined that cell division was quite sensitive to the levels of FtsZ and FtsA but much less so to FtsQ. Inhibition of cell division due to an increase in FtsZ could be suppressed by an increase in FtsA. Inhibition of cell division due to increased FtsA could be suppressed by an increase in FtsZ. In addition, although wild-type strains were relatively insensitive to overexpression of ftsQ, we observed that cell division was sensitized to ftsQ overexpression in ftsI, ftsA, and ftsZ mutants. Among these, the ftsI mutant was the most sensitive. These results suggest that these gene products may interact and that the proper ratio of FtsZ to FtsA is critical for cell division to occur.  相似文献   

13.
Spores of the Bacillus subtilis minicell-producing mutant div IV-B1 were germinated and grown to microcolonies in chambers which facilitate continuous observation of the developing clones with a phase-contrast microscope. Time lapse photographs were taken of 46 clones, covering the period from the beginning of outgrowth until at least two rounds of cell division had been completed. Cell lineages were constructed from contour length measurements of the photographs. These data include cell lengths, division site locations, and cell numbers in clones of various ages. From these data we have determined that the probability of a minicell being produced at any division by the div IV-B1 mutant is 0.31. The location of the abnormal division site which generates the first minicell produced in the outgrowing clone appears to be random with respect to the existing cell poles. In contrast, the location of the second abnormal division site, and hence the second minicell, is not random but rather occurs preferentially in proximity to the first minicell. This clustering of abnormal events suggests that division site location is related to pole age (generations), although other influences on minicell clustering cannot be ruled out at present.  相似文献   

14.
In Escherichia coli, nucleoid separation and cell constriction remain tightly linked when division is retarded by altering the level of synthesis of the protein FtsZ. In this study, we have examined the role of the min locus, which is responsible for the inactivation of polar division sites, in the partition-septation coupling mechanism. We conclude that the coupling persists in a delta min strain and that its timing relative to replication remains dependent on the level of FtsZ synthesis. We suggest that the retarded nucleoid segregation observed in min mutants is the result of this coupling in cells with a perturbed pattern of nonpolar divisions.  相似文献   

15.
Inhibition of cell division in rod-shaped bacteria such as Escherichia coli and Bacillus subtilis results in elongation into long filaments many times the length of dividing cells. As a first step in characterizing the Rhizobium meliloti cell division machinery, we tested whether R. meliloti cells could also form long filaments after cell division was blocked. Unexpectedly, DNA-damaging agents, such as mitomycin C and nalidixic acid, caused only limited elongation. Instead, mitomycin C in particular induced a significant proportion of the cells to branch at the poles. Moreover, methods used to inhibit septation, such as FtsZ overproduction and cephalexin treatment, induced growing cells to swell, bud, or branch while increasing in mass, whereas filamentation was not observed. Overproduction of E. coli FtsZ in R. meliloti resulted in the same branched morphology, as did overproduction of R. meliloti FtsZ in Agrobacterium tumefaciens. These results suggest that in these normally rod-shaped species and perhaps others, branching and swelling are default pathways for increasing mass when cell division is blocked.  相似文献   

16.
The ftsZ gene encodes an essential cell division protein that specifically localizes to the septum of dividing cells. In this study we characterized the effects of the ftsZ2(Rsa) mutation on cell physiology. We found that this mutation caused an altered cell morphology that included minicell formation and an increased average cell length. In addition, this mutation caused a temperature-dependent effect on cell lysis. During this investigation we fortuitously isolated a novel temperature-sensitive ftsZ mutation that consisted of a 6-codon insertion near the 5' end of the gene. This mutation, designated ftsZ26(Ts), caused an altered polar morphology at the permissive temperature and blocked cell division at the nonpermissive temperature. The altered polar morphology resulted from cell division and correlated with an altered geometry of the FtsZ ring. An intragenic cold-sensitive suppressor of ftsZ26(Ts) that caused cell lysis at the nonpermissive temperature was isolated. These results support the hypothesis that the FtsZ ring determines the division site and interacts with the septal biosynthetic machinery.  相似文献   

17.
In Escherichia coli FtsZ assembles into a Z ring at midcell while assembly at polar sites is prevented by the min system. MinC, a component of this system, is an inhibitor of FtsZ assembly that is positioned within the cell by interaction with MinDE. In this study we found that MinC consists of two functional domains connected by a short linker. When fused to MalE the N-terminal domain is able to inhibit cell division and prevent FtsZ assembly in vitro. The C-terminal domain interacts with MinD, and expression in wild-type cells as a MalE fusion disrupts min function, resulting in a minicell phenotype. We also find that MinC is an oligomer, probably a dimer. Although the C-terminal domain is clearly sufficient for oligomerization, the N-terminal domain also promotes oligomerization. These results demonstrate that MinC consists of two independently functioning domains: an N-terminal domain capable of inhibiting FtsZ assembly and a C-terminal domain responsible for localization of MinC through interaction with MinD. The fusion of these two independent domains is required to achieve topological regulation of Z ring assembly.  相似文献   

18.
Formation of the Z ring is the first known event in bacterial cell division. However, it is not yet known how the assembly and contraction of the Z ring are regulated. Here, we identify a novel cell division factor ZapB in Escherichia coli that simultaneously stimulates Z ring assembly and cell division. Deletion of zapB resulted in delayed cell division and the formation of ectopic Z rings and spirals, whereas overexpression of ZapB resulted in nucleoid condensation and aberrant cell divisions. Localization of ZapB to the divisome depended on FtsZ but not FtsA, ZipA or FtsI, and ZapB interacted with FtsZ in a bacterial two-hybrid analysis. The simultaneous inactivation of FtsA and ZipA prevented Z ring assembly and ZapB localization. Time lapse microscopy showed that ZapB–GFP is present at mid-cell in a pattern very similar to that of FtsZ. Cells carrying a zapB deletion and the ftsZ84 ts allele exhibited a synthetic sick phenotype and aberrant cell divisions. The crystal structure showed that ZapB exists as a dimer that is 100% coiled-coil. In vitro , ZapB self-assembled into long filaments and bundles. These results raise the possibility that ZapB stimulates Z ring formation directly via its capacity to self-assemble into larger structures.  相似文献   

19.
The ever increasing problem of antibiotic resistance necessitates a search for new drug molecules that would target novel proteins in the prokaryotic system. FtsZ is one such target protein involved in the bacterial cell division machinery. In this study, we have shown that berberine, a natural plant alkaloid, targets Escherichia coli FtsZ, inhibits the assembly kinetics of the Z-ring, and perturbs cytokinesis. It also destabilizes FtsZ protofilaments and inhibits the FtsZ GTPase activity. Saturation transfer difference NMR spectroscopy of the FtsZ-berberine complex revealed that the dimethoxy groups, isoquinoline nucleus, and benzodioxolo ring of berberine are intimately involved in the interaction with FtsZ. Berberine perturbs the Z-ring morphology by disturbing its typical midcell localization and reduces the frequency of Z-rings per unit cell length to half. Berberine binds FtsZ with high affinity ( K D approximately 0.023 microM) and displaces bis-ANS, suggesting that it may bind FtsZ in a hydrophobic pocket. Isothermal titration calorimetry suggests that the FtsZ-berberine interaction occurs spontaneously and is enthalpy/entropy-driven. In silico molecular modeling suggests that the rearrangement of the side chains of the hydrophobic residues in the GTP binding pocket may facilitate the binding of the berberine to FtsZ and lead to inhibition of the association between FtsZ monomers. Together, these results clearly indicate the inhibitory role of berberine on the assembly function of FtsZ, establishing it as a novel FtsZ inhibitor that halts the first stage in bacterial cell division.  相似文献   

20.
The link between chromosome termination, initiation of cell division, and choice of division sites was studied in Escherichia coli by preparing double mutants. Hybrid mutants containing div52-ts, a cell division initiation mutation, and min, mutations which affect the choice of division sites resulting in the septation of minicells, were characterized. The mutants produced minicells and normal cells coordinately under all conditions studied, although the fraction of minicells is half that of the parental minicell strain. The mutant gradually stopped dividing at both the median and minicell septation sites when transferred from 30 to 41 C in rich medium. A synchronous cell division of filaments was induced 15 min after addition of chloramphenicol to the medium, even at 41 C. Divisions were observed at both normal and minicell sites. These results indicate that div52-ts and min functions share a common step in a cell division pathway. A double mutant containing div52-ts and div27-ts, a dnaB mutant which divides in the absence of DNA synthesis, was characterized. The mutant continues to divide after a shift to the high temperature, although at a reduced rate. The behavior of this hybrid mutant suggests a hypothesis that the chromosome termination signal and div52-ts division initiation signal act on a single membrane site which is altered in div27-ts strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号