首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
According to their main EC (Enzyme Commission) numbers, enzymes are classified into the following 6 main classes: oxidoreductases, transferases, hydrolases, lyases, isomerases, and ligases. A new method has been developed to predict the enzymatic attribute of proteins by introducing the functional domain composition to formulate a given protein sequence. The advantage by doing so is that both the sequence-order-related features and the function-related features are naturally incorporated in the predictor. As a demonstration, the jackknife cross-validation test was performed on a dataset that consists of proteins with only less than 20% sequence identity to each other in order to get rid of any homologous bias. The overall success rate thus obtained was 85% in identifying the enzyme family classes (including the identification of nonenzyme protein sequences as well). The success rate is significantly higher than those obtained by the other methods on such a stringent dataset. This indicates that using the functional domain composition to represent protein samples for statistical prediction is indeed very promising, and will become a powerful tool in bioinformatics and proteomics.  相似文献   

2.
With the rapid increment of protein sequence data, it is indispensable to develop automated and reliable predictive methods for protein function annotation. One approach for facilitating protein function prediction is to classify proteins into functional families from primary sequence. Being the most important group of all proteins, the accurate prediction for enzyme family classes and subfamily classes is closely related to their biological functions. In this paper, for the prediction of enzyme subfamily classes, the Chou's amphiphilic pseudo-amino acid composition [Chou, K.C., 2005. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21, 10-19] has been adopted to represent the protein samples for training the 'one-versus-rest' support vector machine. As a demonstration, the jackknife test was performed on the dataset that contains 2640 oxidoreductase sequences classified into 16 subfamily classes [Chou, K.C., Elrod, D.W., 2003. Prediction of enzyme family classes. J. Proteome Res. 2, 183-190]. The overall accuracy thus obtained was 80.87%. The significant enhancement in the accuracy indicates that the current method might play a complementary role to the exiting methods.  相似文献   

3.
As a continuous effort to use the sequence approach to identify enzymatic function at a deeper level, investigations are extended from the main enzyme classes (Protein Sci. 2004, 13, 2857-2863) to their subclasses. This is indispensable if we wish to understand the molecular mechanism of an enzyme at a deeper level. For each of the 6 main enzyme classes (i.e., oxidoreductase, transferase, hydrolase, lyase, isomerase, and ligase), a subclass training dataset is constructed. To reduce homologous bias, a stringent cutoff was imposed that all the entries included in the datasets have less than 40% sequence identity to each other. To catch the core feature that is intimately related to the biological function, the sample of a protein is represented by hybridizing the functional domain composition and pseudo amino acid composition. On the basis of such a hybridization representation, the FunD-PseAA predictor is established. It is demonstrated by the jackknife cross-validation tests that the overall success rate in identifying the 21 subclasses of oxidoreductases is above 86%, and the corresponding rates in identifying the subclasses of the other 5 main enzyme classes are 94-97%. The high success rates imply that the FunD-PseAA predictor may become a useful tool in bioinformatics and proteomics of the post-genomic era.  相似文献   

4.
A new approach of predicting structural classes of protein domain sequences is presented in this paper. Besides the amino acid composition, the composition of several dipeptides, tripeptides, tetrapeptides, pentapeptides and hexapeptides are taken into account based on the stepwise discriminant analysis. The result of jackknife test shows that this new approach can lead to higher predictive sensitivity and specificity for reduced sequence similarity datasets. Considering the dataset PDB40-B constructed by Brenner and colleagues, 75.2% protein domain sequences are correctly assigned in the jackknife test for the four structural classes: all-alpha, all-beta, alpha/beta and alpha + beta, which is improved by 19.4% in jackknife test and 25.5% in resubstitution test, in contrast with the component-coupled algorithm using amino acid composition alone (AAC approach) for the same dataset. In the cross-validation test with dataset PDB40-J constructed by Park and colleagues, more than 80% predictive accuracy is obtained. Furthermore, for the dataset constructed by Chou and Maggiona, the accuracy of 100% and 99.7% can be easily achieved, respectively, in the resubstitution test and in the jackknife test merely taking the composition of dipeptides into account. Therefore, this new method provides an effective tool to extract valuable information from protein sequences, which can be used for the systematic analysis of small or medium size protein sequences. The computer programs used in this paper are available on request.  相似文献   

5.
Given the sequence of a protein, how can we predict whether it is an enzyme or a non‐enzyme? If it is, what enzyme family class it belongs to? Because these questions are closely relevant to the biological function of a protein and its acting object, their importance is self‐evident. Particularly with the explosion of protein sequences entering into data banks and the relatively much slower progress in using biochemical experiments to determine their functions, it is highly desired to develop an automated method that can be used to give fast answers to these questions. By hybridizing the gene ontology and pseudo‐amino‐acid composition, we have introduced a new method that is called GO‐PseAA predictor and operate it in a hybridization space. To avoid redundancy and bias, demonstrations were performed on a data set in which none of the proteins in an individual class has ≥40% sequence identity to any other. The overall success rate thus obtained by the jackknife cross‐validation test in identifying enzyme and non‐enzyme was 93%, and that in identifying the enzyme family was 94% for the following six main Enzyme Commission (EC) classes: (1) oxidoreductase, (2) transferase, (3) hydrolase, (4) lyase, (5) isomerase, and (6) ligase. The corresponding rates by the independent data set test were 98% and 97%, respectively.  相似文献   

6.
MOTIVATION: A key goal of genomics is to assign function to genes, especially for orphan sequences. RESULTS: We compared the clustered functional domains in the SBASE database to each protein sequence using BLASTP. This representation for a protein is a vector, where each of the non-zero entries in the vector indicates a significant match between the sequence of interest and the SBASE domain. The machine learning methods nearest neighbour algorithm (NNA) and support vector machines are used for predicting protein functional classes from this information. We find that the best results are found using the SBASE-A database and the NNA, namely 72% accuracy for 79% coverage. We tested an assigning function based on searching for InterPro sequence motifs and by taking the most significant BLAST match within the dataset. We applied the functional domain composition method to predict the functional class of 2018 currently unclassified yeast open reading frames. AVAILABILITY: A program for the prediction method, that uses NNA called Functional Class Prediction based on Functional Domains (FCPFD) is available and can be obtained by contacting Y.D.Cai at y.cai@umist.ac.uk  相似文献   

7.
Identification on protein folding types is always based on the 27-class folds dataset, which was provided by Ding & Dubchak in 2001. But with the avalanche of protein sequences, fold data is also expanding, so it will be the inevitable trend to improve the existing dataset and expand more folding types. In this paper, we construct a multi-class protein fold dataset, which contains 3,457 protein chains with sequence identity below 35% and could be classified into 76 fold types. It was 4 times larger than Ding & Dubchak's dataset. Furthermore, our work proposes a novel approach of support vector machine based on optimal features. By combining motif frequency, low-frequency power spectral density, amino acid composition, the predicted secondary structure and the values of auto-correlation function as feature parameters set, the method adopts criterion of the maximum correlation and the minimum redundancy to filter these features and obtain a 95-dimensions optimal feature subset. Based on the ensemble classification strategy, with 95-dimensions optimal feature as input parameters of support vector machine, we identify the 76-class protein folds and overall accuracy measures up to 44.92% by independent test. In addition, this method has been further used to identify upgraded 27-class protein folds, overall accuracy achieves 66.56%. At last, we also test our method on Ding & Dubchak's 27-class folds dataset and obtained better identification results than most of the previous reported results.  相似文献   

8.
MOTIVATION: With protein sequences entering into databanks at an explosive pace, the early determination of the family or subfamily class for a newly found enzyme molecule becomes important because this is directly related to the detailed information about which specific target it acts on, as well as to its catalytic process and biological function. Unfortunately, it is both time-consuming and costly to do so by experiments alone. In a previous study, the covariant-discriminant algorithm was introduced to identify the 16 subfamily classes of oxidoreductases. Although the results were quite encouraging, the entire prediction process was based on the amino acid composition alone without including any sequence-order information. Therefore, it is worthy of further investigation. RESULTS: To incorporate the sequence-order effects into the predictor, the 'amphiphilic pseudo amino acid composition' is introduced to represent the statistical sample of a protein. The novel representation contains 20 + 2lambda discrete numbers: the first 20 numbers are the components of the conventional amino acid composition; the next 2lambda numbers are a set of correlation factors that reflect different hydrophobicity and hydrophilicity distribution patterns along a protein chain. Based on such a concept and formulation scheme, a new predictor is developed. It is shown by the self-consistency test, jackknife test and independent dataset tests that the success rates obtained by the new predictor are all significantly higher than those by the previous predictors. The significant enhancement in success rates also implies that the distribution of hydrophobicity and hydrophilicity of the amino acid residues along a protein chain plays a very important role to its structure and function.  相似文献   

9.
Classes of newly found enzyme sequences are usually determined either by biochemical analysis of eukaryotic and prokaryotic genomes or by microarray chips. These experimental methods are both time-consuming and costly. With the explosion of protein sequences entering into databanks, it is highly desirable to explore the feasibility of selectively classifying newly found enzyme sequences into their respective enzyme classes by means of an automated method. This is indeed important because knowing which family or subfamily an enzyme belongs to may help deduce its catalytic mechanism and specificity, giving clues to the relevant biological function. In this study, a bioinformatical analysis was conducted for 2640 oxidoreductases classified into 16 subclasses according to the different types of substrates they act on during the catalytic process. Although it is an extremely complicated problem and might involve the knowledge of 3-dimensional structure as well as many other physical chemistry factors, some quite promising results have been obtained indicating that the family or subfamily of an enzyme is predictable to a considerable degree by means of sequence-based approach alone if a good training dataset can be established.  相似文献   

10.
A simple approach to scan quickly a large protein sequence databasefor homology is described. The approach used is strictly dependenton the database organization. A database has been compiled inwhich protein sequences are grouped into families of closelyrelated proteins, each family being characterized by its averagedipeptide composition. A new entry in the database can be allocatedin a family by comparing its dipeptide composition with theaverage dipeptide composition of the families.  相似文献   

11.
In the past, a large number of methods have been developed for predicting various characteristics of a protein from its composition. In order to exploit the full potential of protein composition, we developed the web-server COPid to assist the researchers in annotating the function of a protein from its composition using whole or part of the protein. COPid has three modules called search, composition and analysis. The search module allows searching of protein sequences in six different databases. Search results list database proteins in ascending order of Euclidian distance or descending order of compositional similarity with the query sequence. The composition module allows calculation of the composition of a sequence and average composition of a group of sequences. The composition module also allows computing composition of various types of amino acids (e.g. charge, polar, hydrophobic residues). The analysis module provides the following options; i) comparing composition of two classes of proteins, ii) creating a phylogenetic tree based on the composition and iii) generating input patterns for machine learning techniques. We have evaluated the performance of composition-based (or alignment-free) similarity search in the subcellular localization of proteins. It was found that the alignment free method performs reasonably well in predicting certain classes of proteins. The COPid web-server is available at http://www.imtech.res.in/raghava/copid/.  相似文献   

12.
Given a protein sequence, how to identify its subcellular location? With the rapid increase in newly found protein sequences entering into databanks, the problem has become more and more important because the function of a protein is closely correlated with its localization. To practically deal with the challenge, a dataset has been established that allows the identification performed among the following 14 subcellular locations: (1) cell wall, (2) centriole, (3) chloroplast, (4) cytoplasm, (5) cytoskeleton, (6) endoplasmic reticulum, (7) extracellular, (8) Golgi apparatus, (9) lysosome, (10) mitochondria, (11) nucleus, (12) peroxisome, (13) plasma membrane, and (14) vacuole. Compared with the datasets constructed by the previous investigators, the current one represents the largest in the scope of localizations covered, and hence many proteins which were totally out of picture in the previous treatments, can now be investigated. Meanwhile, to enhance the potential and flexibility in taking into account the sequence‐order effect, the series‐mode pseudo‐amino‐acid‐composition has been introduced as a representation for a protein. High success rates are obtained by the re‐substitution test, jackknife test, and independent dataset test, respectively. It is anticipated that the current automated method can be developed to a high throughput tool for practical usage in both basic research and pharmaceutical industry. © 2003 Wiley‐Liss, Inc.  相似文献   

13.
As a result of genome and other sequencing projects, the gap between the number of known protein sequences and the number of known protein structural classes is widening rapidly. In order to narrow this gap, it is vitally important to develop a computational prediction method for fast and accurately determining the protein structural class. In this paper, a novel predictor is developed for predicting protein structural class. It is featured by employing a support vector machine learning system and using a different pseudo-amino acid composition (PseAA), which was introduced to, to some extent, take into account the sequence-order effects to represent protein samples. As a demonstration, the jackknife cross-validation test was performed on a working dataset that contains 204 non-homologous proteins. The predicted results are very encouraging, indicating that the current predictor featured with the PseAA may play an important complementary role to the elegant covariant discriminant predictor and other existing algorithms.  相似文献   

14.
15.
Information of protein subcellular location plays an important role in molecular cell biology. Prediction of the subcellular location of proteins will help to understand their functions and interactions. In this paper, a different mode of pseudo amino acid composition was proposed to represent protein samples for predicting their subcellular localization via the following procedures: based on the optimal splice site of each protein sequence, we divided a sequence into sorting signal part and mature protein part, and extracted sequence features from each part separately. Then, the combined features were fed into the SVM classifier to perform the prediction. By the jackknife test on a benchmark dataset in which none of proteins included has more than 90% pairwise sequence identity to any other, the overall accuracies achieved by the method are 94.5% and 90.3% for prokaryotic and eukaryotic proteins, respectively. The results indicate that the prediction quality by our method is quite satisfactory. It is anticipated that the current method may serve as an alternative approach to the existing prediction methods.  相似文献   

16.
EFICAz (Enzyme Function Inference by Combined Approach) is an automatic engine for large-scale enzyme function inference that combines predictions from four different methods developed and optimized to achieve high prediction accuracy: (i) recognition of functionally discriminating residues (FDRs) in enzyme families obtained by a Conservation-controlled HMM Iterative procedure for Enzyme Family classification (CHIEFc), (ii) pairwise sequence comparison using a family specific Sequence Identity Threshold, (iii) recognition of FDRs in Multiple Pfam enzyme families, and (iv) recognition of multiple Prosite patterns of high specificity. For FDR (i.e. conserved positions in an enzyme family that discriminate between true and false members of the family) identification, we have developed an Evolutionary Footprinting method that uses evolutionary information from homofunctional and heterofunctional multiple sequence alignments associated with an enzyme family. The FDRs show a significant correlation with annotated active site residues. In a jackknife test, EFICAz shows high accuracy (92%) and sensitivity (82%) for predicting four EC digits in testing sequences that are <40% identical to any member of the corresponding training set. Applied to Escherichia coli genome, EFICAz assigns more detailed enzymatic function than KEGG, and generates numerous novel predictions.  相似文献   

17.
Conotoxins are disulfide rich small peptides that target a broad spectrum of ion-channels and neuronal receptors. They offer promising avenues in the treatment of chronic pain, epilepsy and cardiovascular diseases. Assignment of newly sequenced mature conotoxins into appropriate superfamilies using a computational approach could provide valuable preliminary information on the biological and pharmacological functions of the toxins. However, creation of protein sequence patterns for the reliable identification and classification of new conotoxin sequences may not be effective due to the hypervariability of mature toxins. With the aim of formulating an in silico approach for the classification of conotoxins into superfamilies, we have incorporated the concept of pseudo-amino acid composition to represent a peptide in a mathematical framework that includes the sequence-order effect along with conventional amino acid composition. The polarity index attribute, which encodes information such as residue surface buriability, polarity, and hydropathy, was used to store the sequence-order effect. Several methods like BLAST, ISort (Intimate Sorting) predictor, least Hamming distance algorithm, least Euclidean distance algorithm and multi-class support vector machines (SVMs), were explored for superfamily identification. The SVMs outperform other methods providing an overall accuracy of 88.1% for all correct predictions with generalized squared correlation of 0.75 using jackknife cross-validation test for A, M, O and T superfamilies and a negative set consisting of short cysteine rich sequences from different eukaryotes having diverse functions. The computed sensitivity and specificity for the superfamilies were found to be in the range of 84.0-94.1% and 80.0-95.5%, respectively, attesting to the efficacy of multi-class SVMs for the successful in silico classification of the conotoxins into their superfamilies.  相似文献   

18.
Plasmid metagenome nucleotide sequence data were recently obtained from wastewater treatment plant (WWTP) bacteria with reduced susceptibility to selected antimicrobial drugs by applying the ultrafast 454-sequencing technology. The sequence dataset comprising 36,071,493 bases (346,427 reads with an average read length of 104 bases) was analysed for genetic diversity and composition by using a newly developed bioinformatic pipeline based on assignment of environmental gene tags (EGTs) to protein families stored in the Pfam database. Short amino acid sequences deduced from the plasmid metagenome sequence reads were compared to profile hidden Markov models underlying Pfam. Obtained matches evidenced that many reads represent genes having predicted functions in plasmid replication, stability and plasmid mobility which indicates that WWTP bacteria harbour genetically stabilised and mobile plasmids. Moreover, the data confirm a high diversity of plasmids residing in WWTP bacteria. The mobile organic peroxide resistance plasmid pMAC from Acinetobacter baumannii was identified as reference plasmid for the most abundant replication module type in the sequenced sample. Accessory plasmid modules encode different transposons, insertion sequences, integrons, resistance and virulence determinants. Most of the matches to Transposase protein families were identified for transposases similar to the one of the chromate resistance transposon Tn5719. Noticeable are hits to beta-lactamase protein families which suggests that plasmids from WWTP bacteria encode different enzymes possessing beta-lactam-hydrolysing activity. Some of the sequence reads correspond to antibiotic resistance genes that were only recently identified in clinical isolates of human pathogens. EGT analysis thus proofed to be a very valuable method to explore genetic diversity and composition of the present plasmid metagenome dataset.  相似文献   

19.
20.
Shi JY  Zhang SW  Pan Q  Zhou GP 《Amino acids》2008,35(2):321-327
In the Post Genome Age, there is an urgent need to develop the reliable and effective computational methods to predict the subcellular localization for the explosion of newly found proteins. Here, a novel method of pseudo amino acid (PseAA) composition, the so-called “amino acid composition distribution” (AACD), is introduced. First, a protein sequence is divided equally into multiple segments. Then, amino acid composition of each segment is calculated in series. After that, each protein sequence can be represented by a feature vector. Finally, the feature vectors of all sequences thus obtained are further input into the multi-class support vector machines to predict the subcellular localization. The results show that AACD is quite effective in representing protein sequences for the purpose of predicting protein subcellular localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号