首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Summary Foldback elements are a family of transposable elements described inDrosophila melanogaster. The members of this dispersed repetitive family have terminal inverted repeats that sometimes flank a central region. The inverted repeats of all the family members are homologous.The study of the distribution and conservation of the foldback elements in differentDrosophila species shows that this distribution is different from that of the hybrid dysgenesis systems (PM and IR). Sequences homologous to foldback elements were observed by Southern blots and in situ hybridization in all species of themelanogaster subgroup and in some species of themontium andtakahashii subgroups. The element was probably already present before the radiation of these subgroups. No evidence of horizontal transmission of the foldback element could be observed.  相似文献   

2.
Six purified tRNAs labeled with 125I by chemical or enzymatic methods were hybridized to polytene chromosomes of Drosophila melanogaster. The main chromosomal regions of hybridization were: tRNA GGA Gly , 58A, 84C, and 90E; tRNA 2 Leu , 44E, 66B5-8, and 79F; tRNA 2b Ser , 86A, 88A9-12, and 94A6-8; tRNA 3 Thr , 47F and 87B; tRNA 4 Thr , 93A1-2; and tRNA 1 Tyr , 19F, 22F-23A, 41, 50C1-4 and 85A. At 50C the hybridization of tRNA 1 Tyr was polymorphic in the giant strains. When the hybridization of three valine isoacceptors studied previously was re-investigated, it was found that only one hybridization site, 90BC, was shared between tRNA 3b Val and tRNA 4 Val . tRNA 3a Val did not have any sites in common with the other two.  相似文献   

3.
We have previously reported that four tRNAs of Drosophila melanogaster randomly labeled with iodine-125 hybridize in part to the 56EF region of polytene chromosomes where 5S RNA genes occur. In the presence of a 100-fold excess of unlabeled 5S RNA no hybridization of randomly labeled 125I-tRNAAsp 2 occurred at 56EF although hybridization elsewhere was not affected. In addition, tRNAAsp 2 labeled by introducing 125I-5-iodocytidylyl residues into the 3-CCA end with tRNA nucleotidyl transferase did not hybridize to 56EF but did hybridize to its other sites. The hybridization of tRNALys 2, tRNAGly 3 and tRNAMet 3 at 56EF was not eliminated by a 25 to 100-fold excess of unlabeled 5S RNA. When these tRNAs were labeled at the -CCA terminus they hybridized to 56EF as well as to their other sites with the exception that terminally labeled tRNALys 2 no longer hybridized to 62A. The hybridization of the latter three species of tRNA to the region of the 5S genes, amongst other sites, is confirmed. The previously observed hybridization of tRNAAsp 2 in this region appears to have been due to contamination of the tRNA sample with traces of material derived from 5S RNA.  相似文献   

4.
Transfer RNA 5; Asn , tRNA ; His , and tRNAAla were isolated from Drosophila melanogaster by means of Sepharose 4B chromatography and 2-dimensional polyacrylamide gel electrophoresis. The tRNAs were iodinated in vitro with Na125I and hybridized in situ to salivary gland chromosomes from Drosophila. Subsequent autoradiography allowed the localization of the genes for tRNA 5; Asn in the regions 42A, 59F, 60C, and 84F; for tRNAHis in the regions 48F and 56E; and for tRNAAla in the regions 63A and 90C. From these and our previous results it can be concluded that the genes for the Q-base containing tRNAs (tRNAAsn, tRNAAsp, and tRNAHis, are not clustered in the Drosophila melanogaster genome.  相似文献   

5.
Highly purified tRNAs from Drosophila melanogaster were iodinated with 125I and hybridized to squashes of polytene chromosomes of Drosophila salivary glands followed by autoradiography to localize binding sites. Most tRNAs hybridize strongly to more than one site and weakly to one or more additional sites. The major sites for various tRNAs are the following: tRNA 2 Arg , 42A, 84F1,2; tRNA 2 Asp , 29DE; tRNA 3 Gly , 22BC, 35BC, 57BC; tRNA 2 Lys , 42A, 42E; tRNA 5 Lys , 84AB, 87B; tRNA 2 Met , 48B5–7, 72F1–2, 83F-84A; tRNA 3 Met , 46A1–2, 61D1–2, 70F1–2; tRNA 4 Ser , 12DE, 23E; tRNA 7 Ser , 12DE, 23E; tRNA 3a Val , 64D; tRNA 3b Val , 84D3–4, 92B1–9; tRNA 4 Val , 56D3–7, 70BC.  相似文献   

6.
The C terminus of AMPA-type glutamate receptor (AMPAR) GluA1 subunits contains several phosphorylation sites that regulate AMPAR activity and trafficking at excitatory synapses. Although many of these sites have been extensively studied, little is known about the signaling mechanisms regulating GluA1 phosphorylation at Thr-840. Here, we report that neuronal depolarization in hippocampal slices induces a calcium and protein phosphatase 1/2A-dependent dephosphorylation of GluA1 at Thr-840 and a nearby site at Ser-845. Despite these similarities, inhibitors of NMDA-type glutamate receptors and protein phosphatase 2B prevented depolarization-induced Ser-845 dephosphorylation but had no effect on Thr-840 dephosphorylation. Instead, depolarization-induced Thr-840 dephosphorylation was prevented by blocking voltage-gated calcium channels, indicating that distinct Ca2+ sources converge to regulate GluA1 dephosphorylation at Thr-840 and Ser-845 in separable ways. Results from immunoprecipitation/depletion assays indicate that Thr-840 phosphorylation inhibits protein kinase A (PKA)-mediated increases in Ser-845 phosphorylation. Consistent with this, PKA-mediated increases in AMPAR currents, which are dependent on Ser-845 phosphorylation, were inhibited in HEK-293 cells expressing a Thr-840 phosphomimetic version of GluA1. Conversely, mimicking Ser-845 phosphorylation inhibited protein kinase C phosphorylation of Thr-840 in vitro, and PKA activation inhibited Thr-840 phosphorylation in hippocampal slices. Together, the regulation of Thr-840 and Ser-845 phosphorylation by distinct sources of Ca2+ influx and the presence of inhibitory interactions between these sites highlight a novel mechanism for conditional regulation of AMPAR phosphorylation and function.  相似文献   

7.
Ranz JM  Cáceres M  Ruiz A 《Chromosoma》1999,108(1):32-43
The successful hybridization of cosmid clones from Drosophila melanogaster (Sophophora subgenus) to the salivary gland chromosomes of other species as distantly related as those in the Drosophila subgenus attests their great potential for unravelling genome evolution. We have carried out, using 28 cosmids and 13 gene clones, a study of the organization of the D. melanogaster 95A-96A chromosomal region in three Drosophila subgenus species: D. repleta, D. buzzattii and D. virilis. These clones were first used to built an accurate map of this 1.6 Mb region of D. melanogaster chromosome 3R (Muller’s element E). Then, they were hybridized and mapped to the homologous chromosome 2 of the other three distantly related species. The studied region is disseminated over 13 different sites of chromosome 2 in the Drosophila subgenus species, which implies a minimum of 12 inversion breakpoints fixed between the two subgenera. Extrapolation to the entire chromosome gives 90 fixed inversions. The D. melanogaster Pp1-96A-Acr96Aa segment conserved in D. repleta and D. buzzatii is longer than previously thought and is also conserved in D. virilis. In addition, three other D. melanogaster segments conserved in the three Drosophila subgenus species were found. Finally, our data indicate significant statistical differences in the evolution rate of Muller’s element E among lineages, a result that agrees well with the previous cytogenetic data. Received: 22 July 1998; in revised form: 11 November 1998 / Accepted: 12 November 1998  相似文献   

8.
Sequences homologous to oncogeneyes (Y73/Esh/sarcoma viral oncogene cDNA) in theDrosophila melanogaster Oregon genome were detected byin situ hybridization on salivary gland chromosomes. Three separate sites, 8D/X, 57BC/2R and 95CD/3R, were identified. Presence of sequences highly homologous toyes in the genomic DNA was confirmed by dot blot hybridization under high stringency conditions.  相似文献   

9.
The chromosomes (2n = 2x = 24) of Norway spruce are very large since their size reflects the huge amount of genomic DNA (2C = 30 × 109 bp). However, the identification of homologous pairs is hampered by their high degree of similarity at the morphological level. Data so far presented in the literature were not sufficient to solve all the ambiguities in chromosome identification. Several genomic Norway spruce DNA clones containing highly repetitive sequences have been identified and characterised in our laboratory. Three of them were selected for fluorescent in situ hybridization (FISH) experiments because of their strong signals and suitability for chromosome identification: PATR140 hybridized at the centromeric site of three chromosome pairs; PAF1 hybridized in six subtelomeric and two centromeric sites; 1PABCD6 co-localized with the subtelomeric sites identified by PAF1. The statistical analysis of microscopic measurements of chromosomes in combination with the FISH signals of these probes allowed the unambigous construction of Norway spruce karyotype. We also compared the karyotype of Norway spruce with that of other spruce species to infer the number and kind of rearrangements that have occurred during the evolution of these species.Communicated by D.B. Neale  相似文献   

10.
The temporal and spatial pattern of replication of chorion gene clusters in follicle cells during oogenesis inDrosophila melanogaster andDrosophila nasuta was examined by [3H thymidine autoradiography and byin situ hybridization with chorion gene probes. When pulse labelled with [3H] thymidine, the follicle cells from stage 10–12 ovarian follicles of bothDrosophila melanogaster and,Drosophila nasuta often showed intense labelling at only one or two sites per nucleus.In situ hybridization of chorion gene probes derived fromDrosophila melanogaster with follicle cell nuclei ofDrosophila melanogaster andDrosophila nasuta revealed these discrete [3H] thymidine labelled sites to correspond to the two amplifying chorion gene clusters. It appears, therefore, that in spite of evolutionary divergence, the organization and programme of selective amplification of chorion genes in ovarian follicle cells have remained generally similar in these two species. The endoreplicated and amplified copies of each chorion gene cluster remain closely associated but the two clusters occupy separate sites in follicle cell nucleus.  相似文献   

11.
Fifteen species belonging to the obscura group of the genus Drosophila were screened for sequences homologous to Drosophila melanogaster transposable elements (TEs) as an initial step in the examination of the possible occurrence of TEs at chromosomal inversion breakpoints. Blots of genomic DNAs from species of the obscura group were hybridized at three different stringencies with 14 probes representing the major families of TEs described in D. melanogaster. The probe DNAs included copia, gypsy, 412, 297, mdg1, mdg3, 3S18, F, G, I, jockey, P, hobo, and FB3. D. melanogaster TEs were not well represented in the species of the obscura group analyzed. The TEs that were observed generally exhibited heterogeneous distributions, with the exception of F, gypsy and 412 which were ubiquitous, and 297, G, Sancho 2, hobo and FB which were not detected.by A. Bird  相似文献   

12.
Liu F  Iqbal K  Grundke-Iqbal I  Gong CX 《FEBS letters》2002,530(1-3):209-214
Microtubule-associated protein tau is abnormally hyperphosphorylated, glycosylated, and aggregated in affected neurons in the brains of individuals with Alzheimer’s disease (AD). We recently found that the glycosylation might precede hyperphosphorylation of tau in AD. In this study, we investigated the effect of glycosylation on phosphorylation of tau catalyzed by cyclin-dependent kinase 5 (cdk5) and glycogen synthase kinase-3β (GSK-3β). The phosphorylation of the longest isoform of recombinant human brain tau, tau441, at various sites was detected by Western blots and by radioimmuno-dot-blot assay with phosphorylation-dependent and site-specific tau antibodies. We found that cdk5 phosphorylated tau441 at Thr-181, Ser-199, Ser-202, Thr-205, Thr-212, Ser-214, Thr-217, Thr-231, Ser-235, Ser-396, and Ser-404, but not at Ser-262, Ser-400, Thr-403, Ser-409, Ser-413, or Ser-422. GSK-3β phosphorylated all the cdk5-catalyzed sites above except Ser-235. Deglycosylation by glycosidases depressed the subsequent phosphorylation of AD-tau (i) with cdk5 at Thr-181, Ser-199, Ser-202, Thr-205, and Ser-404, but not at Thr-212; and (ii) with GSK-3β at Thr-181, Ser-202, Thr-205, Ser-217, and Ser-404, but not at Ser-199, Thr-212, Thr-231, or Ser-396. These data suggest that aberrant glycosylation of tau in AD might be involved in neurofibrillary degeneration by promoting abnormal hyperphosphorylation by cdk5 and GSK-3β.  相似文献   

13.
Nontranscribed spacers in Drosophila ribosomal DNA   总被引:3,自引:0,他引:3  
Ribosomal DNA nontranscribed spacers in Drosophila virilis DNA have been examined in some detail by restriction site analysis of cloned segments of rDNA, nucleic acid hybridizations involving unfractionated rDNA, and base composition estimates. The overall G+C content of the spacer is 27–28%; this compares with 39% for rDNA as a whole, 40% for main band DNA, and 26% for the D. virilis satellites. Much of the spacer is comprised of 0.25 kb repeats revealed by digestion with Msp I, Fnu DII or Rsd I, which terminate very near the beginning of the template for the ribosomal RNA precursor. The spacers are heterogeneous in length among rDNA repeats, and this is largely accounted for by variation among rDNA units in the number of 0.25 kb elements per spacer. Despite its high A+T content and the repetitive nature of much of the spacer, and the proximity of rDNA and heterochromatin in Drosophila, pyrimidine tract analysis gave no indication of relatedness between the spacer and satellite DNA sequences. Species of Drosophila closely related to D. virilis have rDNA spacers that are homologous with those in D. virilis to the extent that hybridization of a cloned spacer segment of D. virilis rDNA to various DNA is comparable with hybridization to homologous DNA, and distributions of restriction enzyme cleavage sites are very similar (but not identical) among spacers of the various species. There is spacer length heterogeneity in the rDNA of all species, and each species has a unique major rDNA spacer length. Judging from Southern blot hybridization, D. hydei rDNA spacers have 20–30% sequence homology with D. virilis rDNA spacers, and a repetitive component is similarly sensitive to Msp I and Fnu DII digestion, D. melanogaster rDNA spacers have little or no homology with counterparts in D. virilis rDNA, despite a similar content of 0.25 kb repetitive elements. In contrast, sequences in rDNA that encode 18S and 28S ribosomal RNA have been highly conserved during the divergence of Drosophila species; this is inferred from interspecific hybridizations involving ribosomal RNA and a comparison of distributions of restriction enzyme cleavage sites in rDNA.Dedicated to Professor Wolfgang Beermann on the occasion of his sixtieth birthday  相似文献   

14.
LINE-like retrotransposons, the so-called I elements, control the system of I-R (inducer-reactive) hybrid dysgenesis in Drosophila melanogaster. I elements are present in many Drosophila species. It has been suggested that active, complete I elements, located at different sites on the chromosomes, invaded natural populations of D. melanogaster recently (1920–1970). But old strains lacking active I elements have only defective I elements located in the chromocenter. We have cloned I elements from D. melanogaster and the melanogaster subgroup. In D. melanogaster, the nucleotide sequences of chromocentral I elements differed from those on chromosome arms by as much as 7%. All the I elements of D. mauritiana and D. sechellia are more closely related to the chromosomal I elements of D. melanogaster than to the chromocentral I elements in any species. No sequence difference was observed in the surveyed region between two chromosomal I elements isolated from D. melanogaster and one from D. simulans. These findings strongly support the idea that the defective chromocentral I elements of D. melanogaster originated before the species diverged and the chromosomal I elements were eliminated. The chromosomal I elements reinvaded natural populations of D. melanogaster recently, and were possibly introduced from D. simulans by horizontal transmission.  相似文献   

15.
Ribosomal RNAs (28 + 18S and 5S) and 4S RNA extracted from the chironomid Glyptotendipes barbipes were iodinated in vitro with 125I and hybridized to the salivary gland chromosomes of G. barbipes and Drosophila melanogaster. Iodinated 18 + 28 S RNA labeled three puffed sites with associated nucleoli on chromosomes IR, IIL, and IIIL of G. barbipes and the nucleolar organizer of Drosophila. Labeled 5S RNA hybridized to three sites on chromosome IIIR, two sites on chromosome IIR and one site in a Balbiani ring on chromosome IV of Glyptotendipes. Most of the label produced by this RNA was localized seven bands away from the centromere on the right arm of chromosome III, and we consider this to be the main site complementary to 5S RNA in the chironomid. This same RNA preparation specifically labeled the 56 EF region of chromosome IIR of Drosophila which has been shown previously to be the only site labeled when hybridized with homologous 5S RNA. Hybridization of G. barbipes chromosomes with iodinated 4S RNA produced no clearly localized labeled sites over the exposure periods studied.  相似文献   

16.
Phenol oxidase exists in Drosophila hemolymph as a prophenol oxidase, A1 and A3, that is activated in vivo with a native activating system, AMM-1, by limited proteolysis with time. The polypeptide in purified prophenol oxidase A3 has a molecular weight of approximately 77,000 Da. A PCR-based cDNA sequence coding A3 has 2501 bp encoding an open reading frame of 682 amino acid residues. The potential copper-binding sites, from Trp-196 to Tyr-245, and from Asn-366 to Phe-421, are highly homologous to the corresponding sites in other invertebrates. The availability of prophenol oxidase cDNA should be useful in revealing the biochemical differences between A1 and A3 isoforms in Drosophila melanogaster that are refractory or unable to activate prophenol oxidase.  相似文献   

17.
To analyze the behavior of endogenous transposable elements under genomic stress, aDrosophila melanogaster inbred line was submitted to three kinds of viral perturbations. First, a retroviral plasmid containing the avian Rous Associated Virus type 2 (RAV-2) previously deleted for the viral envelope coding gene (env) was introduced by P element transformation into theDrosophila genome. An insertion of this avian retroviral sequence was detected byin situ hybridization in site 53C on polytene chromosome arm 2R. Second,Drosophila embryos were injected with RAV-2 particles produced by cell culture after transfection with the retroviral plasmid. Third, theDrosophila melanogaster inbred line was stably infected by the sigma native virus. It appears that neither the offspring of the flies in which the viral DNA was found integrated nor those from the infected sigma flies showed copia or mdgl element mobilization. Injection of the avian RAV-2 particles led, however, to the observation of somatic transpositions of mdgl element on the 2L chromosome, the copia element insertion pattern remaining stable. Thus, endogenous transposable elements show more instability in sublines injected with exogenous viral particles than in a transgenic subline containing a foreign viral insert, all transposable elements not being equally sensitive to such genomic stress. Correspondence to: I. Jouan-Dufournel  相似文献   

18.
Transfer RNATyr (anticodon GA) was isolated from Drosophila melanogaster by means of Sepharose 4B, RPC-5, and polyacrylamide gel electrophoresis. The tRNA was iodinated in vitro with Na125I and hybridized in situ to salivary gland chromosomes from Drosophila. The genes of tRNATyr were localized in eight regions of the genome by autoradiography. Restriction enzyme analysis of genomic DNA indicated that the haploid Drosophila genome codes for about 23 tRNATyr genes. The regions 22F and 85A each contain four to five tRNATyr genes, whereas the regions 28C, 41AB, 42A, 42E, and 56D each contain two to three tRNATyr genes.  相似文献   

19.
Mitochondrial glutamyl-tRNA isolated from mitochondria of Saccharomyces cerevisiae was separated into two distinct species by re versed-phase chromatography. The migration of the two mitochondrial glutamyl-tRNAs (tRNAIGlu and tRNAIIGlu) differed from that of two glutamyl-tRNA species found in the cytoplasm of a mitochondrial DNA-less petite strain. Both mitochondrial tRNAs hybridized with mitochondrial DNA. Three lines of evidence demonstrate that mitochondrial tRNAIGlu and tRNAIIGlu are transcribed from different mitochondrial cistrons. First the level of hybridization of a mixture of the two tRNAs to mitochondrial DNA was equal to the sum of the saturation hybridization levels of each glutamyl-tRNA alone. Second, the two mitochondrial glutamyl-tRNAs did not compete with each other in hybridization competition experiments. Finally the tRNAs showed individual hybridization patterns with different petite mitochondrial DNAs.Hybridization of the tRNAs to mitochondrial DNA of genetically defined petite strains localized each tRNA with respect to antibiotic resistance markers. The two glutamyl-tRNA cistrons were spatially separated on the genetic map.  相似文献   

20.
C. Biémont 《Chromosoma》1986,93(5):393-397
The polymorphism of the mobile elements Mdg-1 (a copia-like element) and I (an element involved in I-R hybrid dysgenesis) was analysed in a mass-mated population of Drosophila melanogaster by in situ hybridization, using biotinylated DNA probes, on polytene chromosomes. The Mdg-1 and I elements were inserted independently but were within the same bulk of DNA insertion points of the Drosophila genome, which contained on average about 30 insertion sites for each element. The X chromosome contained the lowest copy number of elements while 2R and 3R had the highest number: 3R had the highest variability. There was no correlation between the copy numbers of elements among the chromosome arms. The average expected per locus heterozygosity was equal to 0.17 for both the Mdg-1 and the I elements. Although these two elements differ in sequence, they appeared to behave similarly in the Drosophila melanogaster genome. This suggests that they may compete for target insertion sites and may be under the same control mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号