首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Binding of highly purified 125I labeled M and L antibodies, both belonging to the immunoglobulin G class, was studied in high potassium (HK) and low potassium (LK) sheep red cells. Anti-M and anti-L bound specifically to M and L antigen positive HK and LK red cells, respectively. Nonspecific binding was higher for anti-L to HK cells than for anti-M to LK cells. Once bound, the M and L antibodies were capable of inducing complement dependent immune hemolysis. Only 75-100 and 500-750 molecules of anti-M and anti-L immunoglobulins were required to hemolyze 50% of HK (MM) and LK (LL) red cells, respectively, suggesting that the M and L antigens may be clustered on the surfaces of these cells. Equilibrium binding studies revealed that the maximum number of M sites is 3-6 x 10(3) in HK (MM) and 1.5-4 x 10(3) in LK (LM) cells, respectively. In comparison, the number of L antigens is slightly lower in LK cells, about 1.2-1.8 x 10(3) in LL and less in LM(LK) red cells. The number of M and L antigens, therefore, is more than an order of magnitude larger than that of the Na+K+ pumps measured previously in these cells by 3H-ouabain binding, thus precluding a quantitative correlation between M and L antigens and the Na+K+ pumps different in the three genetic types of sheep red cells. The binding affinities of both anti-M and anti-L could not be described by a single equilibrium dissociation constant indicating heterogeneous antibody populations and /or variability in the antigenic sets of individual HK or LK cells. The pronounced heterogeneity of antigens and/or antibodies in both the M and L systems was reflected in the antibody association kinetics, which also exhibited a remarkable temperature dependence. The data suggest that the correlation between the M and L antigens and the Na+K+ pump molecules is more complex than that in goat red cells previously reported by others.  相似文献   

2.
The kinetic characteristics of the ouabain-sensitive (Na + K) transport system (pump) of high potassium (HK) and low potassium (LK) sheep red cells have been investigated. In sodium medium, the curve relating pump rate to external K is sigmoid with half maximal stimulation (K1/2) occurring at 3 mM for both cell types, the maximum pump rate in HK cells being about four times that in LK cells. In sodium-free media, both HK and LK pumps are adequately described by the Michaelis-Menten equation, but the K1/2 for HK cells is 0.6 ± 0.1 mM K, while that for LK is 0.2 ± 0.05 mM K. When the internal Na and K content of the cells was varied by the PCMBS method, it was found that the pump rate of HK cells showed a gradual increase from zero at very low internal Na to a maximum when internal K was reduced to nearly zero (100% Na). In LK cells, on the other hand, no pump activity was detected if Na constituted less than 70% of the total (Na + K) in the cell. Increasing Na from 70 to nearly 100% of the internal cation composition, however, resulted in an exponential increase in pump rate in these cells to about ⅙ the maximum rate observed in HK cells. While changes in internal composition altered the pump rate at saturating concentrations of external K, it had no effect on the apparent affinity of the pumps for external K. These results lead us to conclude that the individual pump sites in the HK and LK sheep red cell membranes must be different. Moreover, we believe that these data contribute significantly to defining the types of mechanism which can account for the kinetic characteristics of (Na + K) transport in sheep red cells and perhaps in other systems.  相似文献   

3.
4.
Several lines of experimental evidence are presented suggesting that the L antigens in low potassium (LK) sheep red cells are associated with separate Na(+)K(+) pump flux is distinct from the action of anti-L(l) on K(+) leak flux, implying that K(+) leak transport sites may not be converted into active pumps by the L antiserum. Treatment of LK red cells with trypsin completely abolished both the stimulation of K(+) pump flux and the enhancement of the rate of ouabain binding brought about by anti- L. That this effect is due to a total destruction of the L(p) determinant associated with the LK pump was evident from the complete failure of anti-L(p) to bind to trypsinized LK red cells. The L(p) antigen can be effectively protected against the trypsin attack by prior incubation with anti-L, indicating that the sites for antibody binding and trypsin action may be closely adjacent at the structural level. Trypsin treatment, however, did not interfere with anti-L(l) reducing ouabain insensitive K(+) leak influx, nor did it prevent binding of anti-L(ly), the hemolytically active L antibody which is probably identical with anti-L(l). The functional independence of the L(p) and L(l) sites was documented by the observation that anti-L(l) still reduced K(+) leak influx in LK cells with experimentally induced high potassium concentrations, at which K(+) pump flux is fully suppressed, whether or not anti-L(p) was binding to the L(p) antigen associated with the LK pump.  相似文献   

5.
6.
7.
8.
9.
The passive K influx in low K(LK) red blood cells of sheep saturates with increasing external K concentration, indicating that this mode of transport is mediated by membrane-associated sites. The passive K influx, iMLK, is inhibited by external Na. Isoimmune anti-L serum, known to stimulate active K transport in LK sheep red cells, inhibits iMLK about twofold. iMLK is affected by changes in intracellular K concentration, [K]i, in a complex fashion: increasing [K]i from near zero stimulates iMLK, while further increases in [K]i, above 3 mmol/liter cells, inhibit iMLK. The passive K influx is not mediated by K-K exchange diffusion. The effects of anti-L antibody and [K]i on passive cation transport are specific for K: neither factor affects passive Na transport. The common characteristics of passive and active K influx suggest that iMLK is mediated by inactive Na-K pump sites, and that the inability to translocate Na characterizes the inactive pumps. Anti-L antibody stimulates the K pump in reticulocytes of LK sheep. However, anti-L has no effect on iMLK in these cells, apparently because reticulocytes do not have the inactive pump sites which, in mature LK cells, are a consequence of the process of maturation of circulating LK cells. The results also indicate that anti-L alters the maximum velocity of both active and passive K fluxes by converting pumps sites from a form mediating passive K influx to an actively transporting form.  相似文献   

10.
The Lp, L1 and M antigens from sheep red cells were solubilized using the non-ionic detergent Triton X-100 in the presence of dithiothreitol. Recovery rates were improved when membranes were sonicated at 4 degrees C in the presence of the detergent; values in the range 16-25% (M) and 9-17% (Lp and L1) were achieved for recovery.  相似文献   

11.
Summary Antibodies of two specificities in alloimmune sheep anti-L sera, anti-L P and anti-L l , were separated by a new technique and characterized. Absorption of anti-L serum with trypsinized LK (LL) sheep red cells left anti-L P antibodies; the absorbed anti-L l antibodies were then eluted. Anti-L P was only weakly lytic in the presence of complement; it had no effect on passive K influx, but stimulated active K influx. The stimulation could be reversed by eluting the antibody in glycine buffer at low pH. Stimulatory activity in the eluted cells could be restored by resensitization with anti-L P . Anti-L l was more strongly lytic than anti-L P in the presence of complement; it had no effect on active K influx, but inhibited passive K influx. Pig anti-ruminant IgG conjugated to hemocyanin was used to visualize by electron microscopy the number of L P and L l antigen sites onLL sheep red cells sensitized with anti-L P and anti-L l . The values obtained were 590 L P sites/cell and 847 L l sites/cell.  相似文献   

12.
Antisera to the L blood group antigen have been used, following radioiodination of low potassium-type sheep red cells and subsequent immunoprecipitation, to identify a polypeptide of the L antigen. Only LK, and not HK, cells express this 25 kDa component which is present in very low copy number.  相似文献   

13.
Red cells of adult sheep, like those of other ruminants, lack the calcium-activated potassium channel which is present in the membrane of human red cells. Since the activities of other transport systems in the sheep red cell are known to decrease during maturation of the cell or during development of the animal it was investigated whether the K+ channel is present in red cells from younger animals or in reticulocytes. Using the divalent cation ionophore A23187 to increase the intracellular Ca of intact cells, it was found that the K+-selective channel is present in foetal red cells from the foetus or newborn animal but not in reticulocytes. The presence of the channel showed no dependence on the K+ genotype of the sheep and was not associated with either “high K+”-or “low K+”-type Na+ pump. No Ca2+-dependent change in K+ permeability was found in red cells from either newborn or adult donkeys suggesting that its presence in the red cells of the foetus may not be general. The role of the K+ channel in the mammalian red cell and the relationship between the K+ channel and the Na+ pump are discussed.  相似文献   

14.
Summary Anti-L serum prepared by immunization of a high-potassium-type (HK) (blood type MM) sheep with blood from a low-potassium-type (LK) (blood type ML) sheep contained an antibody which stimulated four- to sixfold K+-pump influx in LK (LL) sheep red cells. In long-termin vitro incubation experiments, LK sheep red cells sensitized with anti-L showed a net increase in K+ after two days of incubation at 37°C, whereas HK-nonimmune (NI)-serum-treated control cells lost K+. The antibody could be absorbed by LK (LL) sheep red cells but not by HK sheep red cells. Kinetic experiments showed that the concentration of external K+ ([K+]0) required to produce halfmaximum stimulation of the pump ([Na+]0=0, replaced by Mg++) was the same (0.25 mM) in L-antiserum-treated or untreated LK cells. LK cells with different [K+]i (Na+ replacement) were prepared by the p-chloromercuribenzene sulfonate (PCMBS) method. At [K+]0=5 mM, pump influx decreased as [K+]i increased from 1 to 70 mM in L-antiserum-treated LK cells, whereas LK cells treated with HK-NI-serum ceased to pump at [K+]i=35 mM. Exposure to anti-L serum produced an almost twofold increase in the number of pump sites of LK cells as measured by the binding of tritiated ouabain by LK sheep red cells. These findings indicate that the formation of a complex between the L-antigen and its antibody stimulates active transport in LK sheep red cells both by changing the kinetics of the pump and by increasing the number of pump sites.  相似文献   

15.
Red cells of adult sheep, like those of other ruminants, lack the calcium-activated potassium channel which is present in the membrane of human red cells. Since the activities of other transport systems in the sheep red cell are known to decrease during maturation of the cell or during development of the animal it was investigated whether the K+ channel is present in red cells from younger animals or in reticulocytes. Using the divalent cation ionophore A23187 to increase the intracellular Ca of intact cells, it was found that the K+-selective channel is present in foetal red cells from the foetus or newborn animal but not in reticulocytes. The presence of the channel showed no dependence on the K+ genotype of the sheep and was not associated with either "high K+"- or "low K+"-type Na+ pump. No Ca2+-dependent change in K+ permeability was found in red cells from either newborn or adult donkeys suggesting that its presence in the red cells of the foetus may not be general. The role of the K+ channel in the mammalian red cell and the relationship between the K+ channel and the Na+ pump are discussed.  相似文献   

16.
Three red cell populations have been distinguished in genotypically low potassium (LK) newborn sheep by an improved electrical sizing method and were best approximated by a logarithmic normal distribution. Labeling studies with 51Cr and 59Fe exclude transformation of the three red cell populations into each other. Population I, consisting of large red cells (mean volume 36 μm3), with a comparatively slow electrophoretic mobility is present at birth and disappears within three to four weeks from circulation. These cells possess a high potassium (HK) steady state concentration, a K+ pump influx activity at least 5-fold greater than observed in adult LK red cells, very low amounts of the L antigens generally associated with the LK property, and do not respond to the stimulatory action of the L antibody. The first population is gradually replaced by population II comprising small red cells (mean volume 28 μm3) of intermediate electrophoretic mobility and with a peak production around day 20 after birth. The potassium concentration, [K+]c, in these cells appears to be lower than in the cells of population I but the L antigen content is increased. Formation of population III (mean volume 30 μm3 and comparatively fast electrophoretic mobility) follows closely that of population II and is preceded by a sharp increase in reticulocytosis. The red cells of population III exhibit parameters characteristic for adult LK cells: low [K+]c and K+ pump activity, fully developed L antigen content, and an almost maximal response to the K+ pump stimulating effect of anti-L. In L and M antigen positive LK red cells of newborn sheep, the development of the M antigen parallels that of the L antigen. The data are consistent with the hypothesis that cellular replacement and not maturation is the major factor in controlling the HK-LK transition in newborn sheep.  相似文献   

17.
Passive K transport, as modified by N-ethyl maleimide (NEM), was studied in erythrocytes of the low-K (LK) phenotype of sheep. Brief (5- min) treatment with NEM at less than 0.5 mM caused inhibition of passive K influx; NEM at concentrations greater than 0.5 mM caused stimulation of K influx. NEM had similar effects on K efflux. The treatments with NEM did not affect cell volumes (passive K transport in LK cells is sensitive to changes in cell volume). The stimulation of K transport by high [NEM] was also not a consequence of an effect on the metabolic state of the cells. Passive K transport in LK cells is dependent on Cl (it is inhibited in Cl-free media; it may be K/Cl cotransport). NEM had no effect on K influx in Cl-free (NO3- substituted) media. Pretreatment of the cells with anti-L antiserum (L antigen is found on LK cells and not on HK cells) prevented stimulation of K influx by NEM, but did not prevent inhibition. Therefore, NEM modifies the Cl-dependent K transport pathway at two separate sites, a low-affinity site, at which it stimulates, and a high-affinity site, at which it inhibits. Anti-L antibody prevents NEM's action, but only at the low-affinity site.  相似文献   

18.
Certain anti-sheep L antisera stimulated active potassium transport in cattle red cells. All cattle red cells tested (red cells from 21 Jersey cows) which had an internal K level of less than 70 mmol/1 were stimulated but those with more than 75 mmol/1 of K (red cells from 7 Jersey cows) were not stimulated. Cattle S-system reagents and isoimmune cattle sera produced by injecting red cells of low-potassium type into cows with cells of high-potassium type failed to stimulate active potassium transport in either cattle or sheep red cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号