首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 199 毫秒
1.
玉米秸秆基纤维素乙醇生命周期能耗与温室气体排放分析   总被引:2,自引:0,他引:2  
生命周期评价是目前分析产品或工艺的环境负荷唯一标准化工具,利用其生命周期分析方法可以有效地研究纤维素乙醇生命周期能耗与温室气体排放问题。为了定量解释以玉米秸秆为原料的纤维素乙醇的节能和温室气体减排潜力,利用生命周期分析方法对以稀酸预处理、酶水解法生产的玉米秸秆基乙醇进行了生命周期能耗与温室气体排放分析,以汽车行驶1 km为功能单位。结果表明:与汽油相比,纤维素乙醇E100 (100%乙醇) 和E10 (乙醇和汽油体积比=1∶9) 生命周期化石能耗分别减少79.63%和6.25%,温室气体排放分别减少53.98%和6.69%;生物质阶段化石能耗占到总化石能耗68.3%,其中氮肥和柴油的生命周期能耗贡献最大,分别占到生物质阶段的45.78%和33.26%;工厂电力生产过程的生命周期温室气体排放最多,占净温室气体排放量的42.06%,提升技术减少排放是降低净排放的有效措施。  相似文献   

2.
Background, Aims and Scope  In the world there are more than thirty LCA software products, but they do not have inventories or an evaluation method either with regional applicability, especially for Colombia. A special software for Life Cycle Assessment and the Environmental Performance Evaluation has been developed, which considers the environmental impacts generated by products during their life cycle and processes involving productive activities. It accounts with inventories applicable to Colombia, for processes and services like electrical energy production, transport and waste disposition. The Ecoscarcity evaluation method was adapted to Colombia with national legislation and agreements for polluting reduction signed by country and the EPI (Environmental Points of Impact) was established for 353 substances. Methods  The software allows users to use the methodology which corresponds to the standard ISO 14030 and 14040 directives. The database uses the SPOLD international format. For ApeironPro software, database information used from monitoring air emissions and effluents on factories in the region were realized by the Environmental Research Group from Pontificia Bolivariana University and secondary type information has been obtained starting from studies realized by environmental organizations and factories in the country which are interested in the management of quality environmental indicators. The antiquity of the information was restricted from the last 5 years, 1998 to 2003, in order to possess temporal representativity. The Ecoscarcity method uses information of the Environmental Ministry and Environmental Institutes of Colombia for the actual current load (F), and target norm for total load (Fk), using information with national legislation and agreements for polluting reduction signed by the respective countries. The software was designed in Web ambience with the database in MySQL, while the programming language was JAVA from Sun Microsystem. Results  The software has inventories for energy (electricity from coal, natural gas, fuel oil, hydroelectricity) transport (mean air, truck, motor bus), processes (plastics, rubber, sugar, paints production, detergent production, combustion in heaters, foundry of copper, iron, gold), waste disposal (incineration and landfill). Discussion  The Ecoscarcity method was analyzed for seven impact categories: climate change, acidification, stratospheric ozone depletion, photo-oxidant formation, eutrophication, ecotoxicity and depletion of abiotic resources (coal, oil, natural gas, copper, nickel). Conclusions  For Colombia, the highest environmental impact is associated with the ozone layer depletion (235.7 Ecopoints/g) while the lowest is associated with depletion of coal (8.6 × 10−7 Ecopoints/g), although this is reasonable since Colombia is the tenth largest producer of coal in the world. Recommendations and Perspectives  Latin America and Colombia need more inventories for their processes and to identify the more significant environmental impacts of their industries. This work is an initial step in the research about Life Cycle Assessment and can also improve the work in ecolabels for Colombia.  相似文献   

3.

Purpose

With the tremendous growth in the worldwide electronic information and telecommunication industries, there continues to be an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of electrical and electronic products (e-products). Although Macau is a small region with a total land area of about 29.5 km2 and a population of 557,000 in 2011, there are two personal computers (PCs) for every household in Macau.

Methods

This paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of PCs in Macau. An assessment of the PC (focusing on the desktop PC) was carried out using a detailed modular LCA based on the international standards of the ISO 14040 series. The LCA was constructed using SimaPro software version 7.2 and expressed with both the Eco-indicator'99 method and the Centrum voor Milieuwetenschappen method. Life cycle inventory information was compiled by Ecoinvent 2.2 databases, combined with literature and field investigations of the actual situations.

Results and discussion

The established LCA study showed that the manufacturing and the use of such devices are of the highest environmental importance. In the manufacturing stage, the desktop contributes the most to the total environmental impacts (44.89 Pt), followed by the LCD screens (about 27.53 Pt), while the CRT screen, keyboard, and mouse are of minor importance. During the use phase, the environmental impact is due entirely to the consumption of electricity generated by coal, oil, natural gas, and hydropower. The electricity generated by coal is by far the most important, accounting for about 66 % of the total environmental impact, followed by oil and gas. Within the EoL treatment phase, using incineration, there will be little environmental impact. When adopting recycling technology in the EoL phase, apparent environmental benefits will be generated due mainly to avoiding emissions to water (arsenic ions and cadmium ions) and to air (SO2) in the primary production phase. For the competing technologies of CRT and LCD screens, the environmental impacts are different in different phases, but the total impacts over their entire life cycle are similar.

Conclusions

Results from a life cycle assessment can be used to compare the relative environmental impacts of competing technologies; it can also help designers and managers to focus efforts toward making environmental improvements to a particular technology.  相似文献   

4.
Mean risk magnitude judgments expressed by Belgian and French students on 107 items combining a particular energy domain (wood and biomass, coal, gas, oil, nuclear, water, wind, geothermal and solar) and a particular aspect of the energy production process (obtaining raw materials, storage of raw materials, transport of raw materials, energy production, waste products related to energy production, energy transport, waste products transport, waste products storage, utilization of energy) are reported, and analyzed. Questions were of the form: What is the level of risk (for health and the environment) associated with the item “Electrical energy production by thermodynamic conversion”? Concerning energy domains, nuclear energy received the highest ratings, almost regardless of the aspect of the energy production process considered (from the extraction of raw materials to the storage of production wastes). This was followed by oil, obtaining the next highest ratings after those for nuclear energy, then gas, considered more risky than biomass and coal. The brand image of these two latter energy sources would be almost as positive as that of water, solar, geothermal and wind energy if a solution could be found to the problem of atmospheric emission of carbon monoxide. Concerning production process aspects, waste products (as well as the transport and storage of waste) received the highest ratings. This is not unrelated to the fact that the vast majority of studies devoted to a particular area or particular aspect have concerned nuclear waste. In contrast, no very high degree of concern was found regarding the energy (electrical) transport aspect.  相似文献   

5.
Goal and Scope This study estimates the life cycle inventory (LCI) of the electricity system in the United States, including the 10 NERC (North American Electric Reliability Council) regions, Alaska, Hawaii, off-grid non-utility plants and the US average figures. The greenhouse gas emissions associated with the United States electricity system are also estimated. Methods The fuel mix of the electricity system based on year 2000 data is used. The environmental burdens associated with raw material extraction, petroleum oil production and transportation for petroleum oil and natural gas to power plants are adopted from the DEAMTM LCA database. Coal transportation from a mining site to a power plant is specified with the data from the Energy Information Administration (EIA), which includes the mode of transportation as well as the distance traveled. The gate-to-gate environmental burdens associated with generating electricity from a fossil-fired power plant are obtained from the DEAMTM LCA database and the eGRID model developed by the United States Environmental Protection Agency. For nuclear power plants and hydroelectric power plants, the data from the DEAMTM LCA database are used.Results and Discussion Selected environmental profiles of the US electricity system are presented in the paper version, while the on-line version presents the whole LCI data. The overall US electricity system in the year 2000 released about 2,654 Tg CO2 eq. of greenhouse gas emissions based on 100-year global warming potentials with 193 g CO2 eq. MJe–1 as an weighted average emission rate per one MJ electricity generated. Most greenhouse gases are released during combusting fossil fuels, accounting for 78–95% of the total. The greenhouse gas emissions released from coal-fired power plants account for 81% of the total greenhouse gas emissions associated with electricity generation, and natural gas-fired power plants contribute about 16% of the total. The most significant regions for the total greenhouse gas emissions are the SERC (Southeastern Electric Reliability Council) and ECAR (East Central Area Reliability Coordination Agreement) regions, which account for 22% and 21% of the total, respectively. A sensitivity analysis on the generation and consumption based calculations indicates that the environmental profiles of electricity based on consumption are more uncertain than those based on generation unless exchange data from the same year are available because the exchange rates (region to region import and export of electricity) vary significantly from year to year.Conclusions and Outlook Those who are interested in the LCI data of the US electricity system can refer to the on-line version. When the inventory data presented in the on-line version are used in a life cycle assessment study, the distribution and transmission losses should be taken into account, which is about 9.5% of the net generation [1]. The comprehensive technical information presented in this study can be used in estimating the environmental burdens when new information on the regional fuel mix or the upstream processes is available. The exchange rates presented in this study also offer useful information in consequential LCI studies.  相似文献   

6.
Background, Aim and Scope The objective of this life cycle assessment (LCA) study is to develop LCA models for energy systems in order to assess the potential environmental impacts that might result from meeting energy demands in buildings. The scope of the study includes LCA models of the average electricity generation mix in the USA, a natural gas combined cycle (NGCC) power plant, a solid oxide fuel cell (SOFC) cogeneration system; a microturbine (MT) cogeneration system; an internal combustion engine (ICE) cogeneration system; and a gas boiler. Methods LCA is used to model energy systems and obtain the life cycle environmental indicators that might result when these systems are used to generate a unit energy output. The intended use of the LCA analysis is to investigate the operational characteristics of these systems while considering their potential environmental impacts to improve building design using a mixed integer linear programming (MILP) optimization model. Results The environmental impact categories chosen to assess the performance of the energy systems are global warming potential (GWP), acidification potential (AP), tropospheric ozone precursor potential (TOPP), and primary energy consumption (PE). These factors are obtained for the average electricity generation mix, the NGCC, the gas boiler, as well as for the cogeneration systems at different part load operation. The contribution of the major emissions to the emission factors is discussed. Discussion The analysis of the life cycle impact categories indicates that the electrical to thermal energy production ratio has a direct influence on the value of the life cycle PE consumption factors. Energy systems with high electrical to thermal ratios (such as the SOFC cogeneration systems and the NGCC power plant) have low PE consumption factors, whereas those with low electrical to thermal ratios (such as the MT cogeneration system) have high PE consumption factors. In the case of GWP, the values of the life cycle GWP obtained from the energy systems do not only depend on the efficiencies of the systems but also on the origins of emissions contributing to GWP. When evaluating the life cycle AP and TOPP, the types of fuel as well as the combustion characteristics of the energy systems are the main factors that influence the values of AP and TOPP. Conclusions An LCA study is performed to eraluate the life cycle emission factors of energy systems that can be used to meet the energy demand of buildings. Cogeneration systems produce utilizable thermal energy when used to meet a certain electrical demand which can make them an attractive alternative to conventional systems. The life cycle GWP, AP, TOPP and PE consumption factors are obtained for utility systems as well as cogeneration systems at different part load operation levels for the production of one kWh of energy output. Recommendations and Perspectives Although the emission factors vary for the different energy systems, they are not the only factors that influence the selection of the optimal system for building operations. The total efficiencies of the system play a significant part in the selection of the desirable technology. Other factors, such as the demand characteristics of a particular building, influence the selection of energy systems. The emission factors obtained from this LCA study are used as coefficients of decision variables in the formulation of an MILP to optimize the selection of energy systems based on environmental criteria by taking into consideration the system efficiencies, emission characteristics, part load operation, and building energy demands. Therefore, the emission factors should not be regarded as the only criteria for choosing the technology that could result in lower environmental impacts, but rather one of several factors that determine the selection of the optimum energy system. ESS-Submission Editor: Arpad Horvath (horvath@ce.berkeley.edu)  相似文献   

7.

Introduction  

The biannual Life Cycle Management conference series aims to create a platform for users and developers of Life Cycle Assessment (LCA) and related tools to share their experiences. A key concern of the LCM community has been to move beyond the production of LCA reports toward using the developed knowledge. This paper reports and evaluates some of the main outcomes of the 4th International Life Cycle Management Conference (LCM 2009).  相似文献   

8.
Background, aim, and scope  The main primary energy for electricity in Thailand is natural gas, accounting for 73% of the grid mix. Electricity generation from natural gas combustion is associated with substantial air emissions. The two technologies currently used in Thailand, thermal and combined cycle power plant, have been evaluated for the potential environmental impacts in a “cradle-to-grid” study according to the life cycle assessment (LCA) method. This study evaluates the environmental impacts of each process of the natural gas power production over the entire life cycle and compares two different power plant technologies currently used in Thailand, namely, combined cycle and thermal. Materials and methods  LCA is used as a tool for the assessment of resource consumption and associated impacts generated from utilization of natural gas in power production. The details follow the methodology outlined in ISO 14040. The scope of this research includes natural gas extraction, natural gas separation, natural gas transmission, and natural gas power production. Most of the inventory data have been collected from Thailand, except for the upstream of fuel oil and fuel transmission, which have been computed from Greenhouse gases, Regulated Emissions, and Energy use in Transportation version 1.7 and Global Emission Model for Integrated Systems version 4.3. The impact categories considered are global warming, acidification, photochemical ozone formation, and nutrient enrichment potential (NEP). Results  The comparison reveals that the combined cycle power plant, which has a higher efficiency, performs better than the thermal power plant for global warming potential (GWP), acidification potential (ACP), and photochemical ozone formation potential (POCP), but not for NEP where the thermal power plant is preferable. Discussion  For the thermal power plant, the most significant environmental impacts are from power production followed by upstream of fuel oil, natural gas extraction, separation, and transportation. For the combined cycle power plant, the most significant environmental impacts are from power production followed by natural gas extraction, separation, and transportation. The significant difference between the two types of power production is mainly from the combustion process and feedstock in power plant. Conclusions  The thermal power plant uses a mix of natural gas (56% by energy content) and fuel oil (44% by energy content); whereas, the combined cycle power plant operates primarily on natural gas. The largest contribution to GWP, ACP, and NEP is from power production for both thermal as well as combined cycle power plants. The POCP for the thermal power plant is also from power production; whereas, for combined cycle power plant, it is mainly from transmission of natural gas. Recommendations and perspectives  In this research, we have examined the environmental impact of electricity generation technology between thermal and combined cycle natural gas power plants. This is the overview of the whole life cycle of natural gas power plant, which will help in decision making. The results of this study will be useful for future power plants as natural gas is the major feedstock being promoted in Thailand for power production. Also, these results will be used in further research for comparison with other feedstocks and power production technologies.  相似文献   

9.
Methodology for developing gate-to-gate Life cycle inventory information   总被引:1,自引:0,他引:1  
Life Cycle Assessment (LCA) methodology evaluates holistically the environmental consequences of a product system or activity, by quantifying the energy and materials used, the wastes released to the environment, and assessing the environmental impacts of those energy, materials and wastes. Despite the international focus on environmental impact and LCA, the quality of the underlying life cycle inventory data is at least as, if not more, important than the more qualitative LCA process. This work presents an option to generate gate-to-gate life cycle information of chemical substances, based on a transparent methodology of chemical engineering process design (an ab initio approach). In the broader concept of a Life Cycle Inventory (LCI), the information of each gate-to-gate module can be linked accordingly in a production chain, including the extraction of raw materials, transportation, disposal, reuse, etc. to provide a full cradle to gate evaluation. The goal of this article is to explain the methodology rather than to provide a tutorial on the techniques used. This methodology aims to help the LCA practitioner to obtain a fair and transparent estimate of LCI data when the information is not readily available from industry or literature. Results of gate-to-gate life cycle information generated using the cited methodology are presented as a case study. It has been our experience that both LCI and LCA information provide valuable means of understanding the net environmental consequence of any technology. The LCI information from this methodology can be used more directly in exploring engineering and chemistry changes to improve manufacturing processes. The LCA information can be used to set broader policy and to look at more macro improvements for the environment.  相似文献   

10.
Across the energy sector, alternatives to fossil fuels are being developed, in response to the dual drivers of climate change and energy security. For transport, biofuels have the greatest potential to replace fossil fuels in the short‐to medium term. However, the ecological benefits of biofuels and the role that their deployment can play in mitigating climate change are being called into question. Life Cycle Assessment (LCA) is a widely used approach that enables the energy and greenhouse gas (GHG) balance of biofuel production to be calculated. Concerns have nevertheless been raised that published data show widely varying and sometimes contradictory results. This review describes a systematic review of GHG emissions and energy balance data from 44 LCA studies of first‐ and second‐generation biofuels. The information collated was used to identify the dominant sources of GHG emissions and energy requirements in biofuel production and the key sources of variability in published LCA data. Our analysis revealed three distinct sources of variation: (1) ‘real’ variability in parameters e.g. cultivation; (2) ‘methodological’ variability due to the implementation of the LCA method; and (3) ‘uncertainty’ due to parameters rarely included and poorly quantified. There is global interest in developing a sustainability assessment protocol for biofuels. Confidence in the results of such an assessment can only be assured if these areas of uncertainty and variability are addressed. A more defined methodology is necessary in order to allow effective and accurate comparison of results. It is also essential that areas of uncertainty such as impacts on soil carbon stocks and fluxes are included in LCA assessments, and that further research is conducted to enable a robust calculation of impacts under different land‐use change scenarios. Without the inclusion of these parameters, we cannot be certain that biofuels are really delivering GHG savings compared with fossil fuels.  相似文献   

11.
The International Journal of Life Cycle Assessment - Scientific Life Cycle Assessment (LCA) literature provides some examples of LCA teaching in higher education, but not a structured overview of...  相似文献   

12.
A life cycle assessment (LCA) of various end‐of‐life management options for construction and demolition (C&D) debris was conducted using the U.S. Environmental Protection Agency's Municipal Solid Waste Decision Support Tool. A comparative LCA evaluated seven different management scenarios using the annual production of C&D debris in New Hampshire as the functional unit. Each scenario encompassed C&D debris transport, processing, separation, and recycling, as well as varying end‐of‐life management options for the C&D debris (e.g., combustion to generate electricity versus landfilling for the wood debris stream and recycling versus landfilling for the nonwood debris stream) and different bases for the electricity generation offsets (e.g., the northeastern U.S. power grid versus coal‐fired power generation). A sensitivity analysis was also conducted by varying the energy content of the C&D wood debris and by examining the impact of basing the energy offsets on electricity generated from various fossil fuels. The results include impacts for greenhouse gas (GHG) emissions, criteria air pollutants, ancillary solid waste production, and organic and inorganic constituents in water emissions. Scenarios with nonwood C&D debris recycling coupled with combustion of C&D wood debris to generate electricity had lower impacts than other scenarios. The nonwood C&D debris recycling scenarios where C&D wood debris was landfilled resulted in less overall impact than the scenarios where all C&D debris was landfilled. The lowest impact scenario included nonwood C&D debris recycling with local combustion of the C&D wood debris to generate electricity, providing a net gain in energy production of more than 7 trillion British thermal units (BTU) per year and a 130,000 tons per year reduction in GHG emissions. The sensitivity analysis revealed that for energy consumption, the model is sensitive to the energy content of the C&D wood debris but insensitive to the basis for the energy offset, and the opposite is true for GHG emissions.  相似文献   

13.
Background, aim, and scope  Organic solvents are used in large quantities in the chemical, metal and electronics industries as well as in many consumer products, such as coatings or paints, and are therefore among the most important chemicals. The petrochemical production of organic solvents is a relevant environmental issue because fossil resources are needed (crude oil and natural gas), synthesis processes are energy-intensive and cause considerable amounts of emissions. So far, comprehensive data on the environmental impact are rather scarce. The aim of this paper is to therefore present a systematical environmental assessment of the main petrochemical solvent production routes using the Life Cycle Assessment (LCA) method. Methods  Fifty organic solvents were selected covering the most important representatives from the various chemical groups (e.g., alcohols, esters, ketones). To conduct the LCA, 40 new Life Cycle Inventories (LCI) were established and existing LCI were improved. The petrochemical solvent production was structured into four production routes. In these production routes, the single chemical unit processes (e.g. esterification, carbonylation or hydrogenation) were analyzed in order to determine characteristic environmental impacts. Results and discussion  The four solvent production routes including the unit processes and intermediates are presented. Additionally, energy profiles of these production routes are shown using the Cumulative Primary Energy Demand (CED) as an indicator for the environmental impact. The results were cross-checked with the Global Warming Potential and the Eco-indicator 99 method and good correlations were found. Processes that show high environmental impacts are the dehydration of butylene glycol to tetrahydrofuran, the carbonylation of methanol to methyl formate, the hydrogenation of acetone to methyl isobutyl ketone, and the Reppe synthesis of formaldehyd/acetylene to butylene glycol. Based on the energy profiles, ranges of environmental impacts are determined for all unit processes. On the one hand, esterification and alkylation processes cause high CED values because complex ancillaries are needed and hydroformylation and carbonylation processes are energy-intensive. On the other hand, in hydration, hydrogenation, hydrolysis, and oxidation processes, ancillaries with low CED are added to the chemical structure that result in low CED ranges for these unit processes. Dehydrogenation and molecular sieve separation processes seem to be energy efficient and no ancillaries are required. Therefore, these unit processes cause the lowest CED values. Perspectives  Subject of further research in this field should be the environmental analysis of further process steps that include the presented unit processes and a subsequent statistical analysis in order to derive reliable data ranges for all unit processes. Such statistically robust ranges could be used in the approximation of missing life-cycle inventory data of other chemical products and intermediates. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The site-generic approach currently adopted by the Life Cycle Assessment (LCA) methodology introduces uncertainties into the impact assessment phase of an LCA study. These uncertainties are greatest for localised and short-lived problems but are less significant for long lasting, cumulative environmental effects. Indeed, the reliability of LCA results is high for problems that manifest at a global scale. Nevertheless, even though these results are considered accurate, it is still often unclear as to their relevance in terms of policy development and decision-making. Therefore, this paper demonstrates how LCA can be used to determine the efficacy of policies aimed at reducing a product system’s contribution to global environmental problems. We accomplish this aim by presenting a case study that evaluates the greenhouse gas contributions of each stage in the life cycle of containerboard packaging and the potential impact on emissions of various policy options available to decision makers. Our analysis showed that in general the most useful strategy was to recycle the used packaging. However, our analysis also indicated that when measures are taken to eliminate sources of methane emissions and encourage the use of plantation timber then recycling is no longer beneficial from a greenhouse perspective. This is because the process energy required in the form of gas and electricity is substantially greater for containerboard manufactured from recycled material than it is for virgin fibre.  相似文献   

15.
The International Journal of Life Cycle Assessment - Bottom-up–based life cycle assessment (LCA) approaches are used to assess the greenhouse gas emissions of various products such as...  相似文献   

16.
Goal, Scope and Background Life Cycle Assessment (LCA) remains an important tool in Dutch waste management policies. In 2002 the new National Waste Management Plan 2002–2012 (NWMP) became effective. It was supported by some 150 LCA studies for more than 20 different waste streams. The LCA results provided a benchmark level for new waste management technologies. Although not new, operational techniques using combined pyrolysis/gasification are still fairly rare in Europe. The goal of this study is to determine the environmental performance of the only full scale pyrolysis/gasification plant in the Netherlands and to compare it with more conventional techniques such as incineration. The results of the study support the process of obtaining environmental permits. Methods In this study we used an impact assessment method based on the guidelines described by the Centre of Environmental Science (CML) of Leiden University. The functional unit is defined as treatment of 1 ton of collected hazardous waste (paint packaging waste). Similar to the NWMP, not only normalized scores are presented but also 7 aggegated scores. All interventions from the foreground process (land use, emissions, final waste) are derived directly from the site with the exception of emissions to soil which were calculated. Interventions are accounted to each of the different waste streams by physical relations. Data from background processes are taken from the IVAM LCA database 4.0 mostly originating from the Swiss ETH96 database and adapted to the Dutch situation. Allocation was avoided by using system enlargement. The study has been peer reviewed by an external expert. Results and Discussion It was possible to determine an environmental performance for the pyrolysis/ gasification of paint packaging waste. The Life Cycle Inventory was mainly hampered by the uncertainty occurred with estimated air emissions. Here several assumptions had to be made because several waste inputs and two waste treatment installations profit from one flue gas cleaning treatment thus making it difficult to allocate the emission values from the flue gasses. Compared to incineration in a rotary kiln, pyrolysis/gasification of hazardous waste showed better scores for most of the considered impact categories. Only for the impact categories biodiversity and life support the incineration option proved favorable due to a lower land use. Several impact categories had significant influence on the conclusions: acidification, global warming potential, human toxicity and terrestrial ecotoxicity. The first three are related to a better energy efficiency for pyrolysis/gasification leading to less fossil energy consumption. Terrestrial ecotoxicity in this case is related to specific emissions of mercury and chromium (III). A sensitivity analysis has been performed as well. It was found that the environmental performance of the gasification technique is sensitive to the energy efficiency that can be reached as well as the choice for the avoided fossil energy source. In this study a conservative choice for diesel oil was made whereas a choice for heavy or light fuel oil would further improve the environmental profile. Conclusions Gasification of hazardous waste has a better environmental performance compared to the traditional incineration in rotary kilns mainly due to the high energy efficiency. As was determined by sensitivity analysis the differences in environmental performance are significant. Improvement options for a better performance are a decrease of process emissions (especially mercury) and a further improvement of the energy balance by decreasing the electricity consumption for shredders and oxygen consumption or making more use of green electricity. Recommendations and Perspectives Although the life cycle inventory was sufficiently complete, still some assumptions had to be made in order to establish sound mass balances on the level of individual components and substances. The data on input of waste and output of emissions and final waste were not compatible. It was recommended that companies put more emphasis on data storage accounted to particular waste streams. This is even more relevant since more companies in the future are expected to include life cycle impacts in their environmental performance.  相似文献   

17.
Iceland and Trinidad and Tobago are small open, high‐income island economies with very specific resource‐use patterns. This article presents a material flow analysis (MFA) for the two countries covering a time period of nearly five decades. Both countries have a narrow domestic resource base, their economy being largely based on the exploitation of one or two key resources for export production. In the case of Trinidad and Tobago, the physical economy is dominated by oil and natural gas extraction and petrochemical industries, whereas Iceland's economy for centuries has been based on fisheries. More recently, abundant hydropower and geothermal heat were the basis for the establishment of large export‐oriented metal processing industries, which fully depend on imported raw materials and make use of domestic renewable electricity. Both countries are highly dependent on these natural resources and vulnerable to overexploitation and price developments. We show how the export‐oriented industries lead to high and growing levels of per capita material and energy use and carbon dioxide emissions resulting from large amounts of processing wastes and energy consumption in production processes. The example of small open economies with an industrial production system focused on few, but abundant, key resources and of comparatively low complexity provides interesting insights of how resource endowment paired with availability or absence of infrastructure and specific institutional arrangements drives domestic resource‐use patterns. This also contributes to a better understanding and interpretation of MFA indicators, such as domestic material consumption.  相似文献   

18.
19.
This study presents a comparative assessment of severe accident risks in the energy sector, based on the historical experience of fossil (coal, oil, natural gas, and LPG [Liquefied Petroleum Gas]) and hydro chains contained in the comprehensive Energy-related Severe Accident Database (ENSAD), as well as Probabilistic Safety Assessment (PSA) for the nuclear chain. Full energy chains were considered because accidents can take place at every stage of the chain. Comparative analyses for the years 1969–2000 included a total of 1870 severe (≥ 5 fatalities) accidents, amounting to 81,258 fatalities. Although 79.1% of all accidents and 88.9% of associated fatalities occurred in less developed, non-OECD countries, industrialized OECD countries dominated insured losses (78.0%), reflecting their substantially higher insurance density and stricter safety regulations. Aggregated indicators and frequency-consequence (F-N) curves showed that energy-related accident risks in non-OECD countries are distinctly higher than in OECD countries. Hydropower in non-OECD countries and upstream stages within fossil energy chains are most accident-prone. Expected fatality rates are lowest for Western hydropower and nuclear power plants; however, the maximum credible consequences can be very large. Total economic damages due to severe accidents are substantial, but small when compared with natural disasters. Similarly, external costs associated with severe accidents are generally much smaller than monetized damages caused by air pollution.  相似文献   

20.
Life Cycle Assessment (LCA) has been applied in the leather footwear industry. Due to the fact that the goal of the study is to point those steps in the footwear cycle which contribute most to the total environmental impact, only a simplified semi-quantitative methodology is used. Background-data of all the inputs and outputs from the system have been inventoried. Impact assessment has been restricted to classification and characterisation. From the results of this LCA it has been concluded that energy consumption is an important impact generator phase, due to the characteristics of the electricity production in the studied area (Catalonia and the rest of Spain). A remarkable impact is generated in the solid waste management phase, also due to its characteristics in the studied area. Another significant impact source is the cattle raising phase where great values of Global Warming, Acidification and Eurrophication Potentials are estimated. At the tannery, a great value of water eutrophication potential is observed and this phase is also important for its non-renewable resource consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号