首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Stripe rust (yellow rust), caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat throughout the world. Wild emmer wheat, Triticum dicoccoides, the progenitor of cultivated wheat, was found to be a valuable source for novel stripe-rust-resistance genes. The objective of the present study was to estimate the extent of genetic diversity among the wild emmer wheat accessions, previously identified as highly resistant to stripe rust, in order to select suitable parents for genetic-mapping studies. Twenty three wheat microsatellite (WMS) markers were used to detect DNA polymorphism among 21 accessions of T. dicoccoides, which included 19 resistant and two susceptible accessions originating mainly from the center of origin and diversity in the Upper Galilee and Hermon Mountain in northern Israel. In addition, two Triticum durum and one Triticum aestivum lines were also included in the analysis. The 23 WMS markers used were located on 23 chromosome arms, representing all 14 chromosomes of genomes A and B of wheat, and revealed a total of 230 alleles. The number of alleles ranged from 5 to 18, with an average of ten alleles per WMS. Genetic dissimilarity values between genotypes, calculated by the WMSderived data, were used to produce a dendrogram of the relationships among accessions using the unweighted pair-group method with arithmetic averages (UPGMA). The results showed that all of the wild emmer wheat accessions could be distinguished. Most of the resulting groups were strongly related to the ecogeographical origin of the accessions, indicating that the genetic diversity of T. dicoccoides is correlated with geographic distribution. The three major groups were the Rosh Pinna group (north of the Sea of Galilee), the Mount Hermon group (north of the Golan Heights) and Mount Kena’an group (Upper Galilee). The genetic similarity (GS) of the 21 T. dicoccoides accessions based on WMS results averaged 0.31. As expected, the T. durum and T. aestivum lines were grouped separately from the T. dicoccoides accessions. The results obtained suggest that a relatively small number of microsatellites can be used for the estimation of genetic diversity in wild material of T. dicoccoides. These results will be useful in the identification of suitable parents for the development of mapping populations for tagging yellow-rust resistance genes derived from T. dicoccoides. Furthermore, future work could test the adaptive evolutionary significance of microsatellites in natural populations of wild emmer wheat. Received: 8 August 1997 / Accepted: 25 August 1997  相似文献   

2.
Variation among and within Capsicum species revealed by RAPD markers   总被引:9,自引:0,他引:9  
 Germplasm characterization is an important link between the conservation and utilization of plant genetic resources. A total of 134 accessions from six Capsicumspecies maintained at the Asian Vegetable Research and Development Center were characterized using 110 randomly amplified polymorphic DNA (RAPD) markers. Ten pairs of potentially duplicated accessions were identified. Multidimensional scaling analysis of the genetic distances among accessions resulted in clustering corresponding to a previous species assignment except for six accessions. Diagnostic RAPDs were identified which discriminate among the Capsicumspecies. The diagnostic markers were employed for improved taxonomic identification of accessions since many morphological traits used in the identification of Capsicumare difficult to score. Three Capsicumaccessions, misclassified based on morphological traits, were reassigned species status based on diagnostic RAPDs. Three accessions, not previously classified, were assigned to a species based on diagnostic RAPDs. Definitive conclusions about the species assignment of three other accessions were not possible. The level of diversity between Capsicum annuumaccessions from the genebank and the breeding program were compared and no differences were observed either for RAPD variation or diversity. The utilization of genetic resources as a source of variance for useful traits in the breeding program may be the reason for the similarity of these two groups. Received: 1 September 1998 / Accepted: 28 December 1998  相似文献   

3.
AFLP markers were obtained with 12 EcoRI/ MseI primer combinations on two independent F2 populations of Lactuca sativa ×Lactuca saligna. The polymorphism rates of the AFLP products between the two different L. saligna lines was 39%, between the two different L. sativa cultivars 13% and between the L. sativa and L. saligna parents on average 81%. In both F2 populations segregation distortion was found, but only Chromosome 5 showed skewness that was similar for both populations. Two independent genetic maps of the two F2 populations were constructed that could be integrated due to the high similarity in marker order and map distances of 124 markers common to both populations. The integrated map consisted of 476 AFLP markers and 12 SSRs on nine linkage groups spanning 854 cM. The AFLP markers on the integrated map were randomly distributed with an average spacing between markers of 1.8 cM and a maximal distance of 16 cM. Furthermore, the AFLP markers did not show severe clustering. This AFLP map provides good opportunities for use in QTL mapping and marker-assisted selection. Received: 13 July 2000 / Accepted: 19 January 2001  相似文献   

4.
A sum of 48 accessions of physic nut, Jatropha curcas L. were analyzed to determine the genetic diversity and association between geographical origin using RAPD-PCR markers. Eight primers generated a total of 92 fragments with an average of 11.5 amplicons per primer. Polymorphism percentages of J. curcas accessions for Selangor, Kelantan, and Terengganu states were 80.4, 50.0, and 58.7%, respectively, with an average of 63.04%. Jaccard’s genetic similarity co-efficient indicated the high level of genetic variation among the accessions which ranged between 0.06 and 0.81. According to UPGMA dendrogram, 48 J. curcas accessions were grouped into four major clusters at coefficient level 0.3 and accessions from same and near states or regions were found to be grouped together according to their geographical origin. Coefficient of genetic differentiation (Gst) value of J. curcas revealed that it is an outcrossing species.  相似文献   

5.
 Genetic diversity in random amplified polymorphic DNAs (RAPDs) was studied in 110 genotypes of the tetraploid wild progenitor of wheat, Triticum dicoccoides, from 11 populations sampled in Israel and Turkey. Our results show high level of diversity of RAPD markers in wild wheat populations in Israel. The ten primers used in this study amplified 59 scorable RAPD loci of which 48 (81.4%) were polymorphic and 11 monomorphic. RAPD analysis was found to be highly effective in distinguishing genotypes of T. dicoccoides originating from diverse ecogeographical sites in Israel and Turkey, with 95.5% of the 100 genotypes correctly classified into sites of origin by discriminant analysis based on RAPD genotyping. However, interpopulation genetic distances showed no association with geographic distance between the population sites of origin, negating a simple isolation by distance model. Spatial autocorrelation of RAPD frequencies suggests that migration is not influential. Our present RAPD results are non-random and in agreement with the previously obtained allozyme patterns, although the genetic diversity values obtained with RAPDs are much higher than the allozyme values. Significant correlates of RAPD markers with various climatic and soil factors suggest that, as in the case of allozymes, natural selection causes adaptive RAPD ecogeographical differentiation. The results obtained suggest that RAPD markers are useful for the estimation of genetic diversity in wild material of T. dicoccoides and the identification of suitable parents for the development of mapping populations for the tagging of agronomically important traits derived from T. dicoccoides. Received: 13 July 1998 / Accepted: 13 August 1998  相似文献   

6.
Apple exhibits gametophytic self-incompatibility (GSI) that is controlled by the multiallelic S-locus. This S-locus encodes polymorphicS ribonuclease (S-RNase) for the pistil-part 5 determinant. Information aboutS-genotypes is important when selecting pollen donors for fruit production and breeding of new cultivars. We determined the 5-genotypes of ‘Charden’ (S2S3S4), ‘Winesap’ (S1S28), ‘York Imperial’ (S2S31), ‘Stark Earliblaze’ (S1S28), and ‘Burgundy’ (S20S32), byS-RNase sequencing and S-allele-specific PCR analysis. Two newS-RNases, S31 and S32, were also identified from ‘York Imperial’ and ‘Burgundy’, respectively. These newS-alleles contained the conserved eight cysteine residues and two histidine residues essential for RNase activity. Whereas S31 showed high similarity to S20 (94%), S32 exhibited 58% (to S24) to 76% (to S25) similarity in the exon regions. We designed newS-allele-specific primers for amplifying S31- and S32-RNasc-specific fragments; these can serve as specific gene markers. We also rearranged the apple S-allele numbers containing those newS-RNases. They should be useful, along with anS-RNase-based PCR system, in determining S-genotypes and analyzing new alleles from apple cultivars.  相似文献   

7.
8.
Abstract

Salix alba L. and Salix fragilis L. are two closely related willow species whose phenotypic features, showing a large and continuous variation, have a low diagnostic value for identifying pure species and interspecific hybrids. In this paper, the effectiveness of different multilocus PCR-based molecular markers, such as I-SSRs, RAPDs and AFLPs in detecting genetic polymorphisms able to discriminate the two willow species was evaluated by analysing a set of 12 reference samples. Three genetic similarity indexes, Dice, Jaccard and Simple Matching coefficient, were used for all possible pairwise comparisons of individuals, revealing the same trend of variation within and between species when different marker systems were used. Cluster analysis, based on Dice genetic similarity coefficient, clustered the individuals of S. alba and S. fragilis into two distinct subgroups, indicating that the gene pools are well differentiated. Moreover, a number of private alleles for each marker system allowed the discrimination of the two species because always present only in one of the two. The utility of different marker systems in discriminating willow species was evaluated by the Polymorphism Information Content (PIC) and the Marker Index (MI) parameters. The variation of Dice's indexes obtained from a different number of experiments in relation to the marker systems is discussed.  相似文献   

9.
Relationships among cultivated and wild lentils revealed by RAPD analysis   总被引:5,自引:0,他引:5  
RAPD markers were used to distinguish between six different Lens taxa, representing cultivated lentil and its wild relatives. Twenty-four arbitrary sequence 10-mer primers were identified which revealed robust and easily interpretable amplification-product profiles. These generated a total of 88 polymorphic bands in 54 accessions and were used to partition variation within and among Lens taxa. The data showed that, of the taxa examined, ssp. orientalis is most similar to cultivated lentil. L. ervoides was the most divergent wild taxon followed by L. nigricans. The genetic similarity between the latter two species was of the same magnitude as between ssp. orientalis and cultivated lentil. In addition, species-diagnostic amplification products specific to L. odemensis, L. ervoides and L. nigricans were identified. These results correspond well with previous isozyme and RFLP studies. RAPDs, however, appear to provide a greater degree of resolution at a sub-species level. The level of variation detected within cultivated lentils suggests that RAPD markers may be an appropriate technology for the construction of genetic linkage maps between closely related Lens accessions.On sabbatical leave from HP Agricultural University, Palampur 176 062, India  相似文献   

10.
Genetic Relationships Within and Between Capsicum Species   总被引:1,自引:0,他引:1  
Genetic relationships were estimated among 24 accessions belonging to 11 species of Capsicum, using 2,760 RAPD markers based on touch-down polymerase chain reactions (Td-RAPD-PCR). These markers were implemented in analyses of principal coordinates, unweighted pair group mean average, and 2,000 bootstrap replications. The accessions were divided into four groups, corresponding to previously described Capsicum complexes: C. annuum complex (CA), C. baccatum complex (CB), C. pubescens complex (CP), and C. chacoense accessions (CA/B). Their overall mean genetic similarity index was 0.487 ± 0.082, ranging from 0.88 to 0.32, based on Jaccard’s coefficient. The highest genetic variation was observed among the accessions in CP; the accessions in CB had a low level of variation as judged from the standard deviations of the genetic similarity indices. Based on the Td-RAPD-PCR markers, the 24 accessions were divided into four major groups, three of which corresponded to the three distinct Capsicum complexes. Accessions of C. chacoense were found to be equally related to complexes CA, CB, and CP.  相似文献   

11.
To set up a rational collecting strategy for germplasm of the edible-seeded cucurbit Cucumeropsis mannii, a study was conducted using 24 morphological and seven putative enzyme markers to determine the intra-specific variability from 16 and 22 accessions (representing three cultivars), respectively. The analysis of variance, showed a significant difference between the three cultivars. Principal component analysis pointed out a variation among individuals, mainly on the basis of flower, fruit, and seed size. Dendrogram with UPGMA method allowed clustering of the cultivars. Genetic diversity indices estimated equalled: 9.96% for the proportion of polymorphic loci (P), 1.10 for the number of alleles (A) and 0.023 for observed heterozygosity (Ho). The level of the within accessions genetic diversity (HS = 0.078) was higher than among accessions (DST = 0.042). Nei's genetic distances between the three cultivars were also low (0.079–0.147), indicating a high degree of similarity of the analysed cultivars.  相似文献   

12.
The DNA genetic diversity of 40 accessions of genus Leymus was analyzed by random amplified polymorphic DNA (RAPD) markers. A total of 352 products were amplified by 34 10-mer arbitrary primers, among which 337 products (95.74 %) were found to be polymorphic. 5–14 polymorphic bands were amplified by each polymorphic primer, with an average of 9.91 bands. The data of 352 RAPD bands were used to generate Jaccard’s similarity coefficients and to construct a dendrogram by means of UPGMA. Great genetic diversity in genus Leymus was observed, the genetic diversity among the different species more abundant than that of the different accessions, and the different accessions in a species or the species from the same areas were clustered together.  相似文献   

13.
 Genetic diversity and relationships of 23 cultivated and wild Amaranthus species were examined using both isozyme and RAPD markers. A total of 30 loci encoding 15 enzymes were resolved, and all were polymorphic at the interspecific level. High levels of inter-accessional genetic diversity were found within species, but genetic uniformity was observed within most accessions. In the cultivated grain amaranths (A. caudatus, A. cruentus, and A. hypochondriacus), the mean value of HT was 0.094, HS was 0.003, and GST was 0.977 at the species level. The corresponding values in their putative wild progenitors (A. hybridus, A. powellii, and A. quitensis) were 0.135, 0.004, and 0.963, respectively. More than 600 RAPD fragments were generated with 27 arbitrary 10-base primers. On average, 39.9% of the RAPD fragments were polymorphic among accessions within each crop species; a similar level of polymorphism (42.8%) was present in the putative progenitors, but much higher levels of polymorphism were found in vegetable (51%) and other wild species (69.5%). The evolutionary relationships between grain amaranths and their putative ancestors were investigated, and both the RAPD and isozyme data sets supported a monophyletic origin of grain amaranths, with A. hybridus as the common ancestor. A complementary approach using information from both isozymes and RAPDs was shown to generate more accurate estimates of genetic diversity, and of relationships within and among crop species and their wild relatives, than either data set alone. Received: 13 March 1997/Accepted: 6 May 1997  相似文献   

14.
Two apple genetic linkage maps were constructed using amplified fragment length polymorphisms (AFLPs), simple sequence repeats (SSRs), random amplified polymorphic DNAs (RAPDs), and expressed sequence tag (EST)-derived markers in combination with a pseudo-testcross mapping strategy in which the cultivars ‘Ralls Janet’ and ‘Delicious’ were used as the respective seed parents. Mitsubakaido (Malus sieboldii) was used as the pollen parent for each of the segregating F1 populations. Expressed sequence tag data were obtained from the random sequencing of cDNA libraries constructed from in vitro cultured shoots and maturing fruits of cv ‘Fuji’, which is the offspring of a cross between ‘Ralls Janet’ and ‘Delicious’. In addition, a number of published gene sequences were used to develop markers for mapping. The ‘Ralls Janet’ map consisted of 346 markers (178 AFLPs, 95 RAPDs, 54 SSRs, 18 ESTs, and the S locus) in 17 linkage groups, with a total length of 1082 cM, while that of ‘Delicious’ comprised 300 markers (120 AFLPs, 81 RAPDs, 64 SSRs, 32 ESTs, and the S, Rf, and MdACS-1 loci) on 17 linkage groups spanning 1031 cM. These maps are amenable to comparisons with previously published maps of ‘Fiesta’ and ‘Discovery’ (Liebhard et al., Mol Breed 10:217–241, 2002; Liebhard et al., Theor Appl Genet 106:1497–1508, 2003a) because several of the SSRs (one to three markers per linkage group) were used in all of the maps. Distorted marker segregation was observed in three and two regions of the ‘Ralls Janet’ and ‘Delicious’ maps, respectively. These regions were localized in different parts of the genome from those in previously reported apple linkage maps. This marker distortion may be dependent on the combinations of cultivars used for map construction.  相似文献   

15.
Summary Genetic variation in Phaseolus vulgaris L. (P. vulgaris) was investigated at the isozyme and DNA levels. We constructed a library of size-selected Pst I clones of P. vulgaris nuclear DNA. Clones from this library were used to examine 14 P. vulgaris accessions for restriction fragment length polymorphisms (RFLPs). DNAs from each accession were analyzed with three restriction enzymes and 18 single copy probes. The same accessions were also examined for variability at 16 isozyme loci. Accessions included four representatives of the T phaseolin group and five representatives each of the C and S phaseolin groups. One member of the S group (the breeding line XR-235-1-1) was derived from a cross between P. vulgaris and P. coccineus. Isozymes and RFLPs revealed very similar patterns of genetic variation. Little variation was observed among accessions with C and T phaseolin types or among those with the S phaseolin type. However, both isozyme and RFLP data grouped accessions with S phaseolin separately from those accessions with C or T phaseolin. The highest degree of polymorphism was observed between XR-235-1-1 and members of the C/T group. RFLP markers will supplement isozymes, increasing the number of polymorphic loci that can be analyzed in breeding, genetic, and evolutionary studies of Phaseolus.  相似文献   

16.
The present study describes the assessment of genetic diversity and relationships among 79 Job’s tears (Coix lacrymajobi L.) accessions collected from China and Korea using 17 microsatellite markers. A total of 57 alleles were detected with an average of 3.4 alleles per locus. A high frequency of rare alleles (36.3 %) was observed within the collection. Values for observed (HO), expected heterozygosity (HE) and Shannon’s information index (I) within the analysis ranged from 0.00 (GBssrJT183) to 0.81 (GBssrJT130), from 0.01 (GBssrJT170) to 0.65 (GBssrJT130) and from 0.034 (GBssrJt170) to 1.13 (GBssrJT130), respectively. The locus GBJT130 was the most informative marker with the highest values for observed and effective alleles as well as for HO, HE and I. Based on the UPGMA algorithm, the majority of the Chinese accessions grouped in one cluster, whereas all the Korean accessions grouped together in a separate cluster, indicating that Chinese accessions are genetically quite distinct from Korean accessions. No relation between genetic relatedness among Job’s tears accessions and their place of collection was observed. Chinese accessions exhibited greater within population polymorphism (P = 95 %, HE = 0.30, I = 0.52) than the accessions from Korea (P = 68 %, HE = 0.13, I =0.24), indicating their potentiality as a reservoir of novel alleles for crop improvement. However, in general the low diversity within each population indicates a narrow genetic base within our collection.  相似文献   

17.
Thirty five bands (alleles) from six enzyme systems and fifty seven random amplified polymorphic DNA (RAPD) fragments were selected to analyse the genetic diversity of 33 polyploid wheatgrasses (Triticeae) populations of species Thinopyrum junceiforme and Elytrigia pycnantha, and two hybrids, one pentaploid and one novel 9-ploid. Dice’s similarity coefficient, the UPGMA-derived phenograms from RAPD, and allozymes markers showed that the clustering of wheatgrass populations was based on ploidy level. These markers had similar levels of diversity between populations, with high genetic similarity within the same ploidy-level and within population’s individuals. The tetraploid Th. junceiforme populations are closely related, with a large similarity distances varied from 0.8 to 1. Based on the isozyme and RAPD analyses, diploid taxa are related to polyploids with similarity coefficients 0.4.  相似文献   

18.
Jatropha curcas (jatropha) is a potential biodiesel crop. A major limitation in production is that jatropha remains wild with low genetic variation. Related species/genera in the Euphorbiaceae can potentially be used for its genetic improvement. In this study, we employed inter-simple sequence repeats (ISSRs) to assess genetic variation among 30 accessions of jatropha, two accessions of bellyache bush (Jatropha gossypifolia), two accessions of spicy jatropha (Jatropha integerrima), two accessions of bottleplant shrub (Jatropha podagrica), and three accessions of castor bean hybrids. Genetic relationships were evaluated using 27 of 86 ISSR markers, yielding 307 polymorphic bands with polymorphism contents ranging from 0.76 to 0.95 for IMPN 1 and UBC 807 markers, respectively. Dice’s genetic similarity coefficient ranged from 0.39 to 0.99, which clearly separated the plant samples into seven groups at the coefficient of 0.48. The first group comprised J. curcas from Mexico, the second group comprised J. curcas from China and Vietnam, the third group comprised J. curcas from Thailand, the fourth group was J. integerrima, the fifth group was J. gossypifolia, the sixth group was J. podagrica, and the last and most distinct group was Ricinus communis. Analysis of molecular variance revealed that 63% of the variability was attributable to variation among groups, while 37% was due to variation within groups. Based on Nei’s genetic distance, the population from G2 (J. curcas from China) and G4 (J. curcas from Vietnam) had the least ISSR variability (0.0668), whereas G8 (R. communis) and Jatropha spp. displayed the highest distance (0.6005–0.7211).  相似文献   

19.
The levels of genetic diversity were compared by means of 35 allozyme, 60 RAPD, and 25 microsatellite (SSR) markers for 75–175 individuals of tetraploid wild emmer wheat (Triticum dicoccoides) collected in 1993 from a microgeographic microsite, Ammiad, north of the Sea of Galilee, Israel. This microsite included four major habitats, which showed highly significant differentiation in ecological factors, in particular with respect to rock cover, proximity and height, and surface soil moisture in the early growing season of T. dicoccoides. Higher within-subpopulation genetic diversity was found in the primarily non-coding DNA regions (RAPD and SSR) rather than in the protein-coding (allozymes) regions. However, much larger gene differentiation (G ST) among the subpopulations was observed in the protein-coding allozymes than in the RAPDs and SSRs. Larger genetic distance was found at SSR loci, followed by allozyme and RAPD loci. The subpopulations in drier habitats tend to have higher allozyme, RAPD and SSR diversities (He), the relatively wet Karst subpopulation showed only about half He of the other relatively drier habitats. The subpopulations with larger difference of soil moisture between habitats tend to show larger genetic distances at allozyme, RAPD and SSR loci. These results suggest that climatic selection through aridity stress may be an important factor acting on both structural protein-coding and presumably partly regulatory non-coding DNA regions, resulting in microscale adaptive patterns, although hitchhiking and random drift may also intervene. These results have profound implications for genetic conservation both in situ and ex situ.  相似文献   

20.
A numerical taxonomic study was performed on 148 isolates of Gram-negative, heterotrophic, facultative anaerobic bacteria isolated from amberjack (Seriola dumerili) and its surrounding culture water. The study included 30 type and reference strains belonging to genera Vibrio, Listonella, and Photobacterium. The strains were characterized by 109 morphological, biochemical, physiological, and nutritional tests. Cluster analysis of similarity matrices obtained with SSM and SJ coefficients was carried out. UPGMA (unweighted pair group mathematical average) analysis defined 11 phena at SSM values ≥ 86%. Nine phena were identified as Vibrio alginolyticus, V. fischeri, V. harveyi, V. carchariae, V. mediterranei, V. splendidus, V. furnissii, V. parahaemolyticus, and Photobacterium damselae subsp. damselae. The two latter comprised strains isolated from diseased fish. Received: 27 March 2002 / Accepted: 24 May 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号