首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angiotensin II (Ang II) has two major receptor isoforms, AT1 and AT2. AT1 transphosphorylates Ca(2+)-sensitive tyrosine kinase Pyk2 to activate c-Jun NH2-terminal kinase (JNK). Although AT2 inactivates extracellular signal-regulated kinase (ERK) via tyrosine phosphatases (PTP), the action of AT2 on Pyk2 and JNK remains undefined. Using AT2-overexpressing vascular smooth muscle cells (AT2-VSMC) from AT2-transgenic mice, we studied these undefined actions of AT2. AT1-mediated JNK activity was increased 2.2-fold by AT2 inhibition, which was abolished by orthovanadate. AT2 did not affect AT1-mediated Pyk2 phosphorylation, but attenuated c-Jun mRNA accumulation by 32%. The activity of src-homology 2 domain-containing PTP (SHP-1) was significantly upregulated 1 min after AT2 stimulation. Stable overexpression of SHP-1 dominant negative mutant in AT2-VSMC completely abolished AT2-mediated inhibition of JNK activation and c-Jun expression. These findings suggest that AT2 inhibits JNK activity by affecting the downstream signal of Pyk2 in a SHP-1-dependent manner, leading to a decrease in c-Jun expression.  相似文献   

2.
Endothelial cell spreading, migration, and morphogenesis are essential for angiogenesis, the formation of new blood vessels. In the present study, we explored roles of tyrosine kinase Pyk2 in angiogenesis of pulmonary endothelial cells. We found that tyrosine kinase Pyk2 was particularly enriched in pulmonary vascular endothelial cells and lung, a major organ site for tumor metastasis. By using adenovirus-mediated expression of various Pyk2 mutants, we demonstrated that Pyk2 tyrosine kinase activity was essential for the pulmonary vascular endothelial cell spreading, migration, morphogenesis, as well as pulmonary vein and artery angiogenesis ex vivo. We further showed that Pyk2 kinase activity was required for the expression of focal adhesion kinase, p130Crk-associated substrate, and its homologue human enhancer of filamentation 1, thus regulating formation of focal adhesions and cytoskeletal reorganization. These results indicate that Pyk2 plays a crucial role in the pulmonary endothelial cell motility such as spreading and migration necessary for angiogenesis.  相似文献   

3.
The heptahelical AT(1) G-protein-coupled receptor lacks inherent tyrosine kinase activity. Angiotensin II binding to AT(1) nevertheless activates several tyrosine kinases and stimulates both tyrosine phosphorylation and phosphatase activity of the SHP-2 tyrosine phosphatase in vascular smooth muscle cells. Since a balance between tyrosine kinase and tyrosine phosphatase activities is essential in angiotensin II signaling, we investigated the role of SHP-2 in modulating tyrosine kinase signaling pathways by stably transfecting vascular smooth muscle cells with expression vectors encoding wild-type SHP-2 protein or a catalytically inactive SHP-2 mutant. Our data indicate that SHP-2 is an efficient negative regulator of angiotensin II signaling. SHP-2 inhibited c-Src catalytic activity by dephosphorylating a positive regulatory tyrosine 418 within the Src kinase domain. Importantly, SHP-2 expression also abrogated angiotensin II-induced activation of ERK, whereas expression of catalytically inactive SHP-2 caused sustained ERK activation. Thus, SHP-2 likely regulates angiotensin II-induced MAP kinase signaling by inactivating c-Src. These SHP-2 effects were specific for a subset of angiotensin II signaling pathways, since SHP-2 overexpression failed to influence Jak2 tyrosine phosphorylation or Fyn catalytic activity. These data show SHP-2 represents a critical negative regulator of angiotensin II signaling, and further demonstrate a new function for this phosphatase in vascular smooth muscle cells.  相似文献   

4.
The nontransmembrane protein tyrosine phosphatase SHP-2 plays a critical role in growth factor and cytokine signaling pathways. Previous studies revealed that a fraction of SHP-2 moves to focal contacts upon integrin engagement and that SHP-2 binds to SHP substrate 1 (SHPS-1)/SIRP-1alpha, a transmembrane glycoprotein with adhesion molecule characteristics (Y. Fujioka et al., Mol. Cell. Biol. 16:6887-6899, 1996; M. Tsuda et al., J. Biol. Chem. 273:13223-13229). Therefore, we asked whether SHP2-SHPS-1 complexes participate in integrin signaling. SHPS-1 tyrosyl phosphorylation increased upon plating of murine fibroblasts onto specific extracellular matrices. Both in vitro and in vivo studies indicate that SHPS-1 tyrosyl phosphorylation is catalyzed by Src family protein tyrosine kinases (PTKs). Overexpression of SHPS-1 in 293 cells potentiated integrin-induced mitogen-activated protein kinase (MAPK) activation, and potentiation required functional SHP-2. To further explore the role of SHP-2 in integrin signaling, we analyzed the responses of SHP-2 exon 3(-/-) and wild-type cell lines to being plated on fibronectin. Integrin-induced activation of Src family PTKs, tyrosyl phosphorylation of several focal adhesion proteins, MAPK activation, and the ability to spread on fibronectin were defective in SHP-2 mutant fibroblasts but were restored upon SHP-2 expression. Our data suggest a positive-feedback model in which, upon integrin engagement, basal levels of c-Src activity catalyze the tyrosyl phosphorylation of SHPS-1, thereby recruiting SHP-2 to the plasma membrane, where, perhaps by further activating Src PTKs, SHP-2 transduces positive signals for downstream events such as MAPK activation and cell shape changes.  相似文献   

5.
6.
Secretion of proinflammatory cytokines by LPS activated endothelial cells contributes substantially to the pathogenesis of sepsis. However, the mechanism involved in this process is not well understood. In the present study, we determined the role of a nonreceptor proline-rich tyrosine kinase, Pyk2, in LPS-induced IL-8 (CXCL8) production in endothelial cells. First, we observed a marked activation of Pyk2 in response to LPS. Furthermore, inhibition of Pyk2 activity in these cells by transduction with the catalytically inactive Pyk2 mutant, transfection with Pyk2-specific small interfering RNA, or treatment with Tyrphostin A9 significantly blocked LPS-induced IL-8 production. The supernatants of LPS-stimulated cells exhibiting attenuated Pyk2 activity blocked transendothelial neutrophil migration in comparison to the supernatants of LPS-treated controls, thus confirming the inhibition of functional IL-8 production. Investigations into the molecular mechanism of this pathway revealed that LPS activates Pyk2 leading to IL-8 production through the TLR4. In addition, we identified the p38 MAPK pathway to be a critical step downstream of Pyk2 during LPS-induced IL-8 production. Taken together, these results demonstrate a novel role for Pyk2 in LPS-induced IL-8 production in endothelial cells.  相似文献   

7.
We recently reported the calcium-dependent activation of tyrosine kinase Pyk2 by angiotensin II (Ang II) in pulmonary vein endothelial cells (PVEC). Since Pyk2 has no calcium binding domain, and neither Ca(2+) nor Ca(2+)/calmodulin directly activates Pyk2, it is not clear how Ca(2+) transduces the signal to activate Pyk2, a key tyrosine kinase, in the early events of Ang II signaling. In the present study, we investigated the mechanism of the calcium-dependent activation of Pyk2 in response to Ang II by using 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors and isoprenoid intermediates in PVEC. We have obtained substantial evidence indicating that Ang II activates Pyk2 through calcium-mediated activation of the geranylgeranylated small G protein Rap1 and the Rap1 association with Pyk2. Thus, the small G protein Rap1 is an intermediary signaling molecule linking Ang II-induced calcium signal to Pyk2 activation in PVEC. In addition, our results indicate that 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, a class of cholesterol-lowering drugs, could interrupt Ang II signaling independent of cholesterol lowering in endothelial cells.  相似文献   

8.
Endothelial cells approaching confluence exhibit marked decreases in tyrosine phosphorylation of receptor tyrosine kinases and adherens junctions proteins, required for cell cycle arrest and adherens junctions stability. Recently, we demonstrated a close correlation in endothelial cells between membrane cholesterol and tyrosine phosphorylation of adherens junctions proteins. Here, we probe the mechanistic basis for this correlation. We find that as endothelial cells reach confluence, the tyrosine phosphatase SHP-2 is recruited to a low-density membrane fraction in a cholesterol-dependent manner. Binding of SHP-2 to this fraction was not abolished by phenyl phosphate, strongly suggesting that this binding was mediated by other regions of SHP-2 beside its SH2 domains. Annexin II, previously implicated in cholesterol trafficking, was associated in a complex with SHP-2, and both proteins localized to adhesion bands in confluent endothelial monolayers. These studies reveal a novel, cholesterol-dependent mechanism for the recruitment of signaling proteins to specific plasma membrane domains via their interactions with annexin II.  相似文献   

9.
Angiotensin II (Ang II) AT(2) receptors are abundantly expressed in rat fetal tissues where they probably contribute to development. In the present study we examine the effects of Ang II type 2 receptor stimulation on SHP-1 activation. Ang II (10(-7) M) elicits a rapid and transient tyrosine phosphorylation of SHP-1, maximal at 1 min, in a dose-dependent form, blocked by the AT(2) antagonist, PD123319. SHP-1 phosphorylation is followed in time by tyrosine dephosphorylation of different proteins, suggesting a sequence of events. Ang II induces association of SHP-1 to AT(2) receptors as shown by co-immunoprecipitation, Western blot and binding assays. SHP-1 activity was determined in immunocomplexes obtained with either anti-AT(2) or anti-SHP-1 antibodies, after Ang II stimulation (1 min), in correlation with the maximal level of SHP-1 phosphorylation. Interestingly, following receptor stimulation (1 min) c-Src was associated to AT(2) or SHP-1 immunocomplexes. Preincubation with the c-Src inhibitor PP2 inhibited SHP-1 activation and c-Src association, thus confirming the participation of c-Src in this pathway. We demonstrated here for the first time the involvement of c-Src in SHP-1 activation via AT(2) receptors present in an ex vivo model expressing both receptor subtypes. In this model, AT(2) receptors are not constitutively associated to SHP-1 and SHP-1 is not constitutively activated. Thus, we clearly establish that SHP-1 activation, mediated by the AT(2) subtype, involves c-Src and precedes protein tyrosine dephosphorylation, in rat fetal membranes.  相似文献   

10.
The protein tyrosine phosphatase SHP-1 is a critical regulator of cytokine signaling and inflammation. Mice homozygous for a null allele at the SHP-1 locus have a phenotype of severe inflammation and are hyper-responsive to the TLR4 ligand LPS. TLR4 stimulation in the CNS has been linked to both neuropathic pain and sickness behaviors. To determine if reduction in SHP-1 expression affects LPS-induced behaviors, responses of heterozygous SHP-1-deficient (me/+) and wild-type (+/+) mice to LPS were measured. Chronic (4-week) treatment with LPS induced avoidant behaviors indicative of fear/anxiety in me/+, but not +/+, mice. These behaviors were correlated with a LPS-induced type 2 cytokine, cytokine receptor, and immune effector arginase profile in the brains of me/+ mice not found in +/+ mice. Me/+ mice also had a constitutively greater level of TLR4 in the CNS than +/+ mice. Additionally, me/+ mice displayed constitutively increased thermal sensitivity compared to +/+ mice, measured by the tail-flick test. Moreover, me/+ glial cultures were more responsive to LPS than +/+ glia. Therefore, the reduced expression of SHP-1 in me/+ imparts haploinsufficiency with respect to the control of CNS TLR4 and pain signaling. Furthermore, type 2 cytokines become prevalent during chronic TLR4 hyperstimulation in the CNS and are associated positively with behaviors that are usually linked to type 1 pro-inflammatory cytokines. These findings question the notion that type 2 immunity is solely anti-inflammatory in the CNS and indicate that type 2 immunity induces/potentiates CNS inflammatory processes.  相似文献   

11.
Activation of insulin-like growth factor I receptor (IGF-IR) kinase is an important site of control of IGF-I-linked intracellular signaling pathways. One potentially important regulatory variable is IGF-IR dephosphorylation. It has been shown that SHP-2, a tyrosine phosphatase, can bind to the activated IGF-IR in vitro; however, its role in IGF-IR dephosphorylation in whole cells is unknown. These studies were undertaken to determine whether SHP-2 was a candidate for mediating IGF-IR dephosphorylation. The IGF-IR in smooth muscle cells was dephosphorylated rapidly beginning 10 min after ligand addition, and this was temporally associated with SHP-2 binding to the receptor. IGF-I stimulated SHPS-1 phosphorylation and the subsequent recruitment of SHP-2. In cells expressing a SHPS-1 mutant that did not bind SHP-2 there was no recruitment of SHP-2 to the IGF-IR. Cells expressing a catalytically inactive form of SHP-2 showed SHP-2 recruitment to SHPS-1, but this did not result in SHPS-1 dephosphorylation, and there was a prolonged IGF-IR phosphorylation response after IGF-I stimulation. These studies indicate that IGF-IR stimulates phosphorylation of SHPS-1 which is critical for SHP-2 recruitment to the plasma membrane and for its recruitment to the IGF-IR. Recruitment of SHP-2 to the receptor then results in receptor dephosphorylation. The regulation of this process may be an important determinant of IGF-IR-mediated signaling.  相似文献   

12.
13.
Angiotensin II is an octapeptide that regulates diverse cellular responses including the actin cytoskeletal organization. In this study, stable cell lines overexpressing wild-type or catalytically inactive SHP-2 were employed to elucidate the signaling pathway utilized by the SHP-2 tyrosine phosphatase that mediates an angiotensin II-induced reorganization of the actin cytoskeleton in vascular smooth muscle cells (VSMC). The expression of wild-type SHP-2 prevented an angiotensin II dependent increase in stress fiber formation. In contrast, the catalytically inactive mutant SHP-2 increased stress fiber formation. Additional observations further established that SHP-2 regulates the reorganization of the actin cytoskeleton through RhoA- and Vav2-dependent signaling pathways. The expression of wild-type SHP-2 caused a dephosphorylation of several focal adhesion associated proteins including paxillin, p130Cas, and tensin in VSMC. This dephosphorylation of focal adhesion associated proteins was accompanied by significantly decreased numbers of focal adhesions within cells. These results demonstrate a unique role for SHP-2 in the regulation of the cellular architecture of VSMC, suggesting the possibility that this phosphatase might be instrumental in vascular remodeling.  相似文献   

14.
SHP-1 is an SH2-containing cytoplasmic tyrosine phosphatase that is widely distributed in cells of the hematopoietic system. SHP-1 plays an important role in the signal transduction of many cytokine receptors, including the receptor for erythropoietin, by associating via its SH2 domains to the receptors and dephosphorylating key substrates. Recent studies have suggested that SHP-1 regulates the function of Jak family tyrosine kinases, as shown by its constitutive association with the Tyk2 kinase and the hyperphosphorylation of Jak kinases in the motheaten cells that lack functional SHP-1. We have examined the interactions of SHP-1 with two tyrosine kinases activated during engagement of the erythropoietin receptor, the Janus family kinase Jak-2 and the c-fps/fes kinase. Immunoblotting studies with extracts from mouse hematopoietic cells demonstrated that Jak2, but not c-fes, was present in anti-SHP-1 immunoprecipitates, suggesting that SHP-1 selectively associates with Jak2 in vivo. Consistent with this, when SHP-1 was coexpressed with these kinases in Cos-7 cells, it associated with and dephosphorylated Jak2 but not c-fes. Transient cotransfection of truncated forms of SHP-1 with Jak2 demonstrated that the SHP-1-Jak2 interaction is direct and is mediated by a novel binding activity present in the N terminus of SHP-1, independently of SH2 domain-phosphotyrosine interaction. Such SHP-1-Jak2 interaction resulted in induction of the enzymatic activity of the phosphatase in in vitro protein tyrosine phosphatase assays. Interestingly, association of the SH2n domain of SHP-1 with the tyrosine phosphorylated erythropoietin receptor modestly potentiated but was not essential for SHP-1-mediated dephosphorylation of Jak2 and had no effect on c-fes phosphorylation. These data indicate that the main mechanism for regulation of Jak2 phosphorylation by SHP-1 involves a direct, SH2-independent interaction with Jak2 and suggest the existence of similar mechanisms for other members of the Jak family of kinases. They also suggest that such interactions may provide one of the mechanisms that control SHP-1 substrate specificity.  相似文献   

15.
In a previous study, we showed that nitric oxide donors and N-acetylcysteine, either alone or in combination, inhibited the activation of several mitogen-activated protein kinases by angiotensin II in rat cardiac fibroblasts (Wang, D., Yu, X., and Brecher, P. (1998) J. Biol. Chem. 273, 33027-33034). In the present study, we have focused on the mechanism by which nitric oxide exerts this effect on the activation of extracellular signal-regulated kinase (ERK). We contrasted the effects of nitric oxide on ERK activation by angiotensin II and epidermal growth factor (EGF), since the transactivation of the EGF receptor has been implicated as a response to angiotensin II. We found that nitric oxide inhibited ERK activation by angiotensin II but did not inhibit the relatively slight but significant transactivation of the EGF receptor by angiotensin II. The tyrphostin AG1478, known to inhibit EGF receptor phosphorylation, also inhibited the angiotensin II and EGF-induced activation of ERK, the phosphorylation of the EGF receptor, and the subsequent association of Shc and Grb2. Nitric oxide did not affect either EGF receptor phosphorylation or Shc-Grb2 activation induced by either Ang II or EGF. However, the activation of the calcium-sensitive tyrosine kinase PYK2, which occurred in response to angiotensin II, but not EGF, was inhibited by nitric oxide. The data suggested that PYK2 activation may be an important inhibitory site in signaling pathways affected by nitric oxide.  相似文献   

16.
The coordinated interplay of substrate adhesion and deadhesion is necessary for cell motility. Using MCF-7 cells, we found that insulin-like growth factor I (IGF-I) induces the adhesion of MCF-7 to vitronectin and collagen in a dose- and time-dependent manner, suggesting that IGF-I triggers the activation of different integrins. On the other hand, IGF-I promotes the association of insulin receptor substrate 1 with the focal adhesion kinase (FAK), paxillin, and the tyrosine phosphatase SHP-2, resulting in FAK and paxillin dephosphorylation. Abrogation of SHP-2 catalytic activity with a dominant-negative mutant (SHP2-C>S) abolishes IGF-I-induced FAK dephosphorylation, and cells expressing SHP2-C>S show reduced IGF-I-stimulated chemotaxis compared with either mock- or SHP-2 wild-type-transfected cells. This impairment of cell migration is recovered by reintroduction of a catalytically active SHP-2. Interestingly, SHP-2-C>S cells show a larger number of focal adhesion contacts than wild-type cells, suggesting that SHP-2 activity participates in the integrin deactivation process. Although SHP-2 regulates mitogen-activated protein kinase activity, the mitogen-activated protein kinase kinase inhibitor PD-98059 has only a marginal effect on MCF-7 cell migration. The role of SHP-2 as a general regulator of cell chemotaxis induced by other chemotactic agents and integrins is discussed.  相似文献   

17.
Gonadotropin-releasing hormone (GnRH) is secreted from hypothalamic GnRH neurons and stimulates a GnRH receptor in gonadotroph cells and GnRH neurons. The GnRH receptor belongs to the G-protein-coupled receptors, and stimulation of the GnRH receptor activates extracellular signal-regulated protein kinase (ERK). We reported previously that the δ2 isoform of Ca2+/calmodulin-dependent protein kinase II (CaM kinase IIδ2) was involved in GnRH-induced ERK activation in cultured GnRH neurons (GT1–7 cells). Recently, we found that GnRH treatment of GT1–7 cells activated proline-rich tyrosine kinase 2 (Pyk2), and Pyk2 was involved in ERK activation. In the current study, we examined the possibility that CaM kinase IIδ2 might activate Pyk2. Knockdown of CaM kinase IIδ2 and KN93, an inhibitor of CaM kinases, inhibited the GnRH-induced activation of Pyk2. In the case of cultured gonadotroph cells (αT3-1 cells), knockdown of CaM kinase IIβ’e inhibited GnRH-induced Pyk2 activation. In addition, our inhibitor studies indicated that Pyk2 and CaM kinase II were involved in the GnRH-induced shedding of proHB-EGF in GT1–7 cells. These results suggested that CaM kinase II activated the ERK pathway through Pyk2 activation and HB-EGF production in response to GnRH.  相似文献   

18.
19.
SHP-1 is a Src homology 2 (SH2) domain-containing tyrosine phosphatase that plays an essential role in negative regulation of immune cell activity. We describe here a new model for regulation of SHP-1 involving phosphorylation of its C-terminal Ser591 by associated protein kinase Calpha. In human platelets, SHP-1 was found to constitutively associate with its substrate Vav1 and, through its SH2 domains, with protein kinase Calpha. Upon activation of either PAR1 or PAR4 thrombin receptors, the association between the three proteins was retained, and Vav1 became phosphorylated on tyrosine and SHP-1 became phosphorylated on Ser591. Phosphorylation of SHP-1 was mediated by protein kinase C and negatively regulated the activity of SHP-1 as demonstrated by a decrease in the in vitro ability of SHP-1 to dephosphorylate Vav1 on tyrosine. Protein kinase Calpha therefore critically and negatively regulates SHP-1 function, forming part of a mechanism to retain SHP-1 in a basal active state through interaction with its SH2 domains, and phosphorylating its C-terminal Ser591 upon cellular activation leading to inhibition of SHP-1 activity and an increase in the tyrosine phosphorylation status of its substrates.  相似文献   

20.
We established Jurkat transfectants that overexpress Pyk2 or its mutants, K457A (lysine 457 was mutated to alanine), Pyk2-Y402F (tyrosine 402 to phenylalanine), and Pyk2-Y881F to investigate the role of Pyk2 in T cell activation. Pyk2 as well as kinase-inactive Pyk2-K457A, was phosphorylated at tyrosine residues 402, 580, and 881 upon T cell antigen receptor cross-linking, indicating that these residues are phosphorylated by other tyrosine kinase(s). However, no tyrosine phosphorylation of Pyk2-Y402F was detected while more than 60% of the tyrosine phosphorylation was observed in Pyk2-Y881F. Pyk2-Y402F inhibited the activation of endogenous Pyk2. The degree of activation of both c-Jun NH(2)-terminal kinase and p38 mitogen-activated protein kinase but not extracellular signal-regulated protein kinase after concurrent ligation of T cell antigen receptor and CD28 was reduced by more than 50% in the clones expressing Pyk2-Y402F. Consistent with this inhibition, IL-2 production was significantly diminished in the Pyk2-Y402F-expressing clones. Furthermore, we found that Pyk2, when overexpressed, associates with Zap70 and Vav. Taken together, these findings suggest that Pyk2 is involved in the activation of T cells through its tyrosine 402.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号