首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess the roles of FSH and LH on follicular growth, after various experimental manipulations, hamster follicles were sorted into 10 stages and incubated for 4 h with [3H]thymidine. Stages 1-4 correspond to follicles with 1-4 layers of granulosa cells, respectively; Stage 5 = 5 or 6 layers of granulosa cells plus theca; Stage 6 = 7-8 layers of granulosa cells plus theca; Stage 7 = early formation of the antrum; Stages 8-10 = small, intermediate and large antral follicles, respectively. Phenobarbitone sodium injected at 13:00 h on pro-oestrus blocked the normal rise of blood FSH and LH concentrations at 15:00 h and prevented the increase of [3H]thymidine incorporation into follicles of Stages 1-9. The optimal treatment to reverse the effects of phenobarbitone was 1 microgram FSH and 2 micrograms LH injected i.p. at 13:00 h which restored DNA replication to follicles of Stages 2-10: FSH acted primarily on Stages 2-5 and LH on Stages 5-10. Injection of phenobarbitone at 13:00 h on prooestrus followed by 2.5 micrograms FSH at 22:00 h restored DNA synthesis by the next morning to follicles at Stages 1-8. In hamsters hypophysectomized at 09:00 h on the day of oestrus (Day 1), injection on Day 4 of 2.5 micrograms FSH restored DNA synthesis 6 h later to Stage 2-6 follicles. Unilateral ovariectomy on Day 3 resulted 6 h later in an acute rise in FSH and LH and change of follicles from Stage 4 to Stage 5 but, paradoxically, there was decreased synthesis of DNA in follicles of Stages 5-10.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Insertion of osmotic minipumps containing 1 mg ovine LH on Day 1 (oestrus) elevated circulating serum concentrations of LH, progesterone and androstenedione when compared with values at pro-oestrus. Ovulation was blocked for at least 2 days at which time there were twice the normal numbers of preovulatory follicles. Follicular and thecal progesterone production in vitro was elevated when compared with that in pro-oestrous controls. Follicular and thecal androstenedione production in vitro was lower than in controls even though serum concentrations of androstenedione were elevated; the higher androstenedione values may be due to the increase in number of preovulatory follicles when compared with pro-oestrous controls. Follicles from LH-treated hamsters aromatized androstenedione to oestradiol and follicular production of oestradiol was similar to that in pro-oestrous follicles despite low follicular androstenedione production in the LH-treated group. Treatment with 20 i.u. hCG on Days 4 or 6 after insertion of an LH osmotic minipump on Day 1 induced ovulation of approximately 30 ova, indicating that the blockade of ovulation was not due to atresia of the preovulatory follicles. Serum progesterone concentrations on Days 2, 4 and 6 in LH-treated hamsters were greater than 17 nmol/l, suggesting that the blockade of ovulation might have been due to prevention of the LH surge by high serum progesterone concentrations.  相似文献   

3.
Medium-sized (4-6 mm) pig follicles were incubated for 10 h and then examined via light microscopy. Treatment with pig FSH resulted in significantly increased concentrations of oestradiol, testosterone, androstenedione and progesterone in the medium. Follicle regulatory protein (FRP) alone (1 micrograms/ml) decreased follicular secretion of oestradiol (56%) and progesterone (53%) but stimulated the secretion of testosterone (226%) and androstenedione (139%). In the presence of 1 ng FSH/ml, the inhibitory effect of FRP on oestradiol secretion was enhanced (74%), progesterone values were unaffected and secretion of testosterone and androstenedione were reduced by 66% and 53%, respectively. All effects of FRP were fully overcome by 1 micrograms FSH/ml. The incidence of atresia, as defined by granulosa cell pycnosis, was similar in all treatment groups (1-3 of 10 follicles per group). The remaining follicles had intact granulosa cells. However, follicles treated with FRP (1 micrograms/ml) + FSH (1 ng/ml) had pycnotic nuclei in the theca interna cells, in the presence of an intact stratum granulosum. External exposure of follicles to FRP may not reflect physiological conditions since, in vivo, thecal pycnosis is never observed before granulosa cell pycnosis. However, the present results indicate that FRP is potentially capable of altering both follicular morphology and steroidogenesis. We suggest that FSH and FRP interact to affect follicular development.  相似文献   

4.
Members of the transforming growth factor-beta (TGF-beta) superfamily have wide-ranging influences on many tissue and organ systems including the ovary. Two recently discovered TGF-beta superfamily members, growth/differentiation factor-9 (GDF-9) and bone morphogenetic protein-15 (BMP-15; also designated as GDF-9B) are expressed in an oocyte-specific manner from a very early stage and play a key role in promoting follicle growth beyond the primary stage. Follicle growth to the small antral stage does not require gonadotrophins but appears to be driven by local autocrine/paracrine signals from both somatic cell types (granulosa and theca) and from the oocyte. TGF-beta superfamily members expressed by follicular cells and implicated in this phase of follicle development include TGF-beta, activin, GDF-9/9B and several BMPs. Acquisition of follicle-stimulating hormone (FSH) responsiveness is a pre-requisite for growth beyond the small antral stage and evidence indicates an autocrine role for granulosa-derived activin in promoting granulosa cell proliferation, FSH receptor expression and aromatase activity. Indeed, some of the effects of FSH on granulosa cells may be mediated by endogenous activin. At the same time, activin may act on theca cells to attenuate luteinizing hormone (LH)-dependent androgen production in small to medium-size antral follicles. Dominant follicle selection appears to depend on differential FSH sensitivity amongst a growing cohort of small antral follicles. Activin may contribute to this selection process by sensitizing those follicles with the highest "activin tone" to FSH. Production of inhibin, like oestradiol, increases in selected dominant follicles, in an FSH- and insulin-like growth factor-dependent manner and may exert a paracrine action on theca cells to upregulate LH-induced secretion of androgen, an essential requirement for further oestradiol secretion by the pre-ovulatory follicle. Like activin, BMP-4 and -7 (mostly from theca), and BMP-6 (mostly from oocyte), can enhance oestradiol and inhibin secretion by bovine granulosa cells while suppressing progesterone secretion; this suggests a functional role in delaying follicle luteinization and/or atresia. Follistatin, on the other hand, may favor luteinization and/or atresia by bio-neutralizing intrafollicular activin and BMPs. Activin receptors are expressed by the oocyte and activin may have a further intrafollicular role in the terminal stages of follicle differentiation to promote oocyte maturation and developmental competence. In a reciprocal manner, oocyte-derived GDF-9/9B may act on the surrounding cumulus granulosa cells to attenuate oestradiol output and promote progesterone and hyaluronic acid production, mucification and cumulus expansion.  相似文献   

5.
Hamster ovarian follicles at Stages 1 to 10 (Stages 1-4: follicles with 1-4 layers of granulosa cells (GC); Stages 5-7: 5-10 layers GC plus theca; Stages 8-10: antral follicles) were isolated on the morning of proestrus or estrus and incubated for 2 h in the absence or presence of follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (Prl), progesterone (P4), 17 alpha-hydroxyprogesterone (17OHP), or androstenedione (A). Steroid accumulations in the media were measured by radioimmunoassay (RIA). On proestrus, without any hormonal stimulus, consistent accumulation of P4 through estradiol-17 beta (E2) occurred in low amounts only from Stage 6 and on; both FSH (5-25 ng) and LH (1-25 ng) significantly stimulated steroidogenesis by Stage 6-10 follicles, and the effects of FSH, except for Stage 10, were largely attributable to LH contamination. However, 25 ng FSH significantly stimulated A production by Stages 1-4, whereas 1-25 ng LH was ineffective. On estrus, follicles at all stages, especially 1-6, showed significant and dose-dependent increases in P4 production in response to FSH; both FSH and LH significantly stimulated P4 and 17OHP accumulation from Stage 5 onwards; however, there was no increase in A and E2 compared to controls. Even the smallest estrous follicles showed a shift to predominance of P4 accumulation. On proestrus, Prl had a negative influence on LH-induced accumulation of P4 and 17OHP by Stages 7-9 and 6-8, respectively, without affecting A or E2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Hypophysectomized PMSG-primed hamsters were injected with PMSG antiserum and the theca and granulosa cells of the resulting atretic follicles were incubated in vitro. In the absence of added hormone, 17 alpha-hydroxyprogesterone and oestradiol production was not detectable in granulosa cells collected and incubated at 0, 12 and 24 h after antiserum. Progesterone production was not detected in control incubations at 0 h but was measurable with cells collected at 12 h after PMSG antiserum. When incubated with androstenedione or pregnenolone (10 ng/ml for each) 17 alpha-hydroxyprogesterone and progesterone production by granulosa cells were significantly increased at 0, 12 and 24 h after antiserum. Granulosa cells were capable of aromatizing androstenedione to oestradiol at all times examined. At 0 and 12 h after antiserum to PMSG, isolated thecal shells produced androstenedione. LH stimulation caused increased androstenedione production in all thecae at 0 h, in 50% of the thecae at 12 h and in none at 24 h after antiserum. Thecal shells produced 17 alpha-hydroxyprogesterone in response to LH at 0, 12 and 24 h after antiserum, and produced progesterone at all times examined. Thecae also responded to LH with increased progesterone production up to 72 h after antiserum. These experiments demonstrate that one important steroidogenic event in atresia may be the loss of activity of C 17,20 lyase in the theca leading to loss of substrate (androstenedione) for granulosa cell aromatization, although aromatase activity is present until at least 24 h after the induction of atresia.  相似文献   

7.
In mice deficient in progesterone receptor (PR), follicles of ovulatory size develop but fail to ovulate, providing evidence for an essential role for progesterone and PR in ovulation in mice. However, little is known about the expression and regulation of PR mRNA in preovulatory follicles of ruminant species. One objective of this study was to determine whether and when PR mRNA is expressed in bovine follicular cells during the periovulatory period. Luteolysis and the LH/FSH surge were induced with prostaglandin F(2alpha) and a GnRH analogue, respectively, and the preovulatory follicle was obtained at 0, 3.5, 6, 12, 18, or 24 h after GnRH treatment. RNase protection assays revealed a transient increase in levels of PR mRNA, which peaked at 6 h after GnRH and declined to the time 0 value by 12 h and a second increase at 24 h. The second objective was to investigate the mechanisms that regulate PR mRNA expression through in vitro studies on follicular cells of preovulatory follicles obtained before the LH/FSH surge. Theca and granulosa cells were isolated and cultured with or without a luteinizing dose of LH or FSH, progesterone, LH + progesterone, or LH + antiprogestin (RU486). Levels of PR mRNA increased in a time-dependent manner in granulosa cells cultured with LH or FSH and in theca cells cultured with LH, peaking at 10 h of culture. In contrast, progesterone (200 ng/ml) did not upregulate mRNA for its own receptor, and neither progesterone nor RU486 affected LH-stimulated PR mRNA accumulation. Furthermore, RU486 completely blocked LH-stimulated expression of oxytocin mRNA, indicating that PR induced by LH in vitro is functional. These results show that the gonadotropin surge induces a rapid and transient increase in expression of PR mRNA in both theca and granulosa cells of bovine periovulatory follicles followed by a second rise close to the time of ovulation and that the first increase in PR mRNA can be mimicked in vitro by gonadotropins but not by progesterone. These results suggest multiple and time-dependent roles for progesterone and PR in the regulation of periovulatory events in cattle.  相似文献   

8.
Follicles were isolated from hamster ovaries at 09:00 h and 15:00 h on each of the 4 days of the oestrous cycle (Day 1 = oestrus; Day 4 = pro-oestrus) by microdissection and by a mixture of enzymes and classified into 10 stages with pre-calibrated pipettes (stage 1 = preantral follicles with 1 layer of granulosa cells; stage 10 = preovulatory antral follicles). The follicles at each stage were incubated for 4 h with [3H]thymidine with incorporation expressed per microgram follicular DNA or per follicle. A significant increase in thymidine per follicle occurred at 15:00 h on Days 1 and 3 of the cycle from stage 2 (bilaminar follicle) to stage 6 (7-8 layers granulosa cells plus theca). When expressed as thymidine per follicle or microgram DNA, there was a significant increase in incorporation for stages 1-4 (4 layers granulosa cells) on Day 4 at 15:00 h compared to 09:00 h, presumably as a consequence of the preovulatory increase in gonadotrophins. Follicles in stages 5 to 8 (preantral follicles with 5 or more layers of granulosa cells to small antral follicles), from which the next set of ovulatory follicles will be selected, did not show a significant peak in incorporation per microgram DNA until Day 1 at 09:00 and 15:00 h when the second increase in FSH is in progress. DNA synthesis was similarly sustained throughout Day 1 for stage 1-4 follicles. These results suggest that periovulatory changes in FSH and LH, directly or indirectly, are not only responsible for ovulation and the recruitment of the next set of follicles destined to ovulate but also stimulate DNA replication in smaller follicles which develop over the course of several cycles before they ovulate or become atretic.  相似文献   

9.
Implants of progesterone on the day of dioestrus II in the hamster induced on the following day an increase in circulating levels of progesterone (6.0 +/- 0.7 ng/ml, N = 8; sesame oil controls, less than 0.5 ng/ml, N = 6) and a decline in serum levels of LH (5.3 +/- 0.4 ng/ml; controls 12 +/- 2 ng/ml) and oestradiol (10 +/- 2 pg/ml; controls 69 +/- 5 pg/ml). The production of androstenedione and oestradiol by antral follicles in vitro was reduced in progesterone-treated hamsters when compared with controls, but progesterone production was not affected. Aromatizing activities of antral follicles were the same in progesterone-treated and sesame oil-treated hamsters. Androstenedione production by theca was significantly less in progesterone-treated hamsters than in controls. On dioestrus II, LH replacement therapy (200 micrograms ovine LH by osmotic minipump inserted s.c.) prevented the decline in follicular androstenedione and oestradiol production induced by progesterone alone, and also prevented the decline in thecal androstenedione production in vitro. The results indicate that exogenous progesterone on dioestrus II lowers circulating levels of LH by the following day, inhibits thecal androstenedione production and thus reduces follicular oestradiol production without alteration in aromatizing ability.  相似文献   

10.
A GnRH antagonist (Antarelix) was used to suppress endogenous pulsatile secretion of LH and delay the preovulatory LH surge in superovulated heifers to study the effect of a prolonged follicular phase on both follicle and oocyte quality. Oestrous cycles were synchronized in 12 heifers with progestagen (norgestomet) implants for 10 days. On day 4 (day 0 = day of oestrus), heifers were stimulated with 24 mg pFSH for 4 days and luteolysis was induced at day 6 with PGF2 alpha (2 ml Estrumate). Animals in the control group (n = 4) were killed 24 h after the last FSH injection. At this time, heifers in group A36h (n = 4) and group A60h (n = 4) were treated with 1.6 mg of Antarelix every 12 h for 36 and 60 h, respectively, and then killed. After dissection of ovarian follicles, oocytes were collected for individual in vitro maturation, fertilization and culture; follicular fluid was collected for determination of steroid concentrations, and granulosa cells were smeared, fixed and stained for evaluation of pycnosis rates. Granulosa cell smears showed that 90% of follicles were healthy in the control group. In contrast, 36 and 58% of the follicles in group A36h showed signs of early or advanced atresia, respectively, while 90% of the follicles in group A60h showed signs of late atresia. Intrafollicular concentrations of oestradiol decreased (P < 0.0001) from healthy follicles (799.14 +/- 40.65 ng ml-1) to late atretic follicles (3.96 +/- 0.59 ng ml-1). Progesterone concentrations were higher (P < 0.0001) in healthy follicles compared with atretic follicles, irrespective of degree of atresia. Oestradiol:progesterone ratios decreased (P < 0.0001) from healthy (4.58 +/- 0.25) to late atretic follicles (0.07 +/- 0.009). The intrafollicular concentrations of oestradiol and progesterone were significantly higher (P < 0.0001) in the control than in the treated groups. The oestradiol:progesterone ratio was higher (P < 0.0001) in the control (4.55 +/- 0.25) than in the A36h (0.40 +/- 0.05) and A60h (0.07 +/- 0.009) groups. Unexpectedly, the cleavage rate of fertilized oocytes, blastocyst rate and number of cells per blastocyst were not significantly different among control (85%, 41% and 95 +/- 8), A36h (86%, 56% and 93 +/- 5) and A60h (88%, 58% and 79 +/- 4) groups. In addition, there were no significant differences in the blastocyst rates from oocytes derived from healthy (45%), early atretic (54%), advanced atretic (57%) and late atretic follicles (53%). In conclusion, the maintenance of the preovulatory follicles in superovulated heifers with a GnRH antagonist induced more atresia and a decrease in oestradiol and progesterone concentrations. However, the developmental potential in vitro to day 8 of the oocytes recovered from these atretic follicles was not affected.  相似文献   

11.
To evaluate the mechanisms involved in the reduction of estrogen concentrations in porcine follicular fluid during atresia, nonatretic and atretic follicles ranging from 4 to 7 mm in diameter were selected. Follicular fluid estrogen concentrations were 7-16-fold less in the atretic follicles. Isolated granulosa cells from atretic follicles demonstrated a significant reduction in aromatase activity and in follicle-stimulating hormone (FSH)-induced progesterone production in vitro compared to granulosa cells from nonatretic follicles. Isolated theca from atretic follicles also demonstrated a reduction in estrogen production. However, androgen concentrations were equivalent in the follicular fluid of atretic and nonatretic follicles, and theca from atretic follicles maintained testosterone and androstenedione production in vitro. The loss of thecal aromatase activity with atresia is not secondary to a reduction in FSH responsiveness, since FSH did not increase thecal progesterone production in vitro. Cell degeneration also does not account for the reduction in thecal estrogen production, since both androgen output in vitro and follicular fluid androgen concentrations were maintained. These data thus demonstrate that a mechanism other than reduced FSH responsiveness must account for the selective loss of thecal aromatase activity in this stage of atresia.  相似文献   

12.
In cyclic hamsters, exogenous progesterone (100 micrograms) administered s.c. at 09:00 h on the day of dioestrus II reduced prostaglandin (PG) E and 6-keto PGF-1 alpha but not PGF concentrations in preovulatory follicles measured at 09:00 h of pro-oestrus. The injection of 10 micrograms ovine LH (NIADDK-oLH-25) concurrently with 100 micrograms progesterone on dioestrus II prevented the decline in follicular PGE and 6-keto PGF-1 alpha values. Administration of LH alone did not significantly alter follicular PG concentrations. Inhibition of follicular PGE accumulation by progesterone was due to a decline in granulosa PGE concentration and not thecal PGE. Progesterone administration also reduced follicular oestradiol concentrations. Administration of oestradiol-17-cyclopentanepropionate (ECP) (10 micrograms) with progesterone did not prevent the decline in follicular PGE and 6-keto PGF-1 alpha but did increase follicular PGF concentrations. However, ECP given alone on dioestrus II reduced follicular PGE and increased PGF concentrations in preovulatory follicles on pro-oestrus. It is concluded that exogenous progesterone administered on dioestrus II inhibits granulosa PGE and 6-keto PGF-1 alpha accumulation in preovulatory follicles, probably by reducing serum LH concentrations, and that the granulosa cells, which are LH-dependent, are a major source of follicular PGE.  相似文献   

13.
An enzymatic method was developed to collect intact follicles at different stages of development from cyclic hamsters to study ovarian folliculogenesis under various circumstances. Ovaries from 6 adult hamsters on each day of the cycle (Day 1 = ovulation) were collected, corpora lutea and large preantral and antral follicles were dissected, and follicles saved. Minced ovaries were then incubated with a mixture of collagenase, DNAse and pronase at 37 degrees C for 20 min to disperse intact follicles. Histological studies with 2191 isolated follicles revealed 10 different stages of follicular development (depending on the number of granulosa cell layers surrounding the oocyte and development of the antrum). Of the total follicular population, 14% showed signs of atresia, with 50% of those having 1-3 layers of granulosa cells (Stages 1-3); a second peak of 18% was observed in antral follicles (Stages 8-10). No signs of thecal cells were evident until the follicles reached Stage 6 (7-8 layers of granulosa cells), which possibly accounts for reduced atresia in this class and beyond. Ultrastructural study revealed that there were no signs of morphological damage to the basement membrane or to other subcellular organelles in the small preantral follicles. The presence of subnuclear lipid droplets in follicles with 3 layers of granulosa cells provided evidence for potential steroidogenesis by small follicles. The number of Stage 1-10 follicles was remarkably constant throughout the estrous cycle (460 +/- 34 per animal on Day 1 vs. 492 +/- 66 on Day 4). The usefulness of this method in analyzing follicular kinetics is illustrated in experiments involving hypophysectomy and the effects of unilateral ovariectomy. This procedure offers an improved method to study the factors responsible for the growth and the differentiation of small preantral follicles in the mammalian ovary.  相似文献   

14.
Chicken granulosa and theca cells were isolated from F1 and F4-6 follicles 2-4 h before ovulation, and the amounts of progesterone, testosterone and oestradiol released in the medium during incubation for 3 h, in the presence or absence of pregnenolone as a percursor and stimulatory drugs or inhibitory drugs, were measured. Progesterone synthesis by granulosa cells was stimulated with oLH or theophylline. Much more progesterone was synthesized when pregnenolone was added to the medium. The amount of testosterone produced by the granulosa cells was similar to that produced by the theca cells. The production of testosterone was increased by the addition of oLH or theophylline. Oestradiol synthesis by F4-6 follicles was higher than by F1 follicles, and it was higher in the theca cells than in the granulosa cells. The addition of oLH or theophylline increased oestradiol synthesis in the theca cells and the granulosa cells of F4-6 follicles. The results indicate that oestradiol can be produced from pregnenolone by the theca cells alone. It is possible, however, that the theca cells also take in the precursors for the production of oestradiol from the granulosa cells.  相似文献   

15.
Gonadotrophins, fecundity genes and ovarian follicular function   总被引:3,自引:0,他引:3  
The Booroola Merino is a sheep breed having a major gene(s) (F) influencing its ovulation-rate. Homozygous (FF), heterozygous (F+) and non-carriers (++) of the gene have ovulation-rates of greater than or equal to 5, 3 or 4 and 1 or 2 respectively with the durations of each oestrous cycle and oestrous behaviour being similar in all genotypes. Although the principal site(s) of gene expression are obscure, FF genotypes have mean plasma concentrations of FSH and LH which are higher than in the F+ ewes, which in turn are higher than in the ++ animals. Thus, the FF and F+ animals provide a unique system in which to examine ovarian function under continual exposure to elevated gonadotrophin concentrations. At the ovarian level, F gene-specific differences in follicular development and function were noted. In small follicles (0.1-1.0 mm dia.), the basal levels of cAMP and the in vitro synthesis of cAMP, progesterone, androstenedione and oestradiol-17 beta in response to LH and FSH were significantly influenced by genotype (FF greater than F+ greater than ++; P less than 0.05). In larger follicles (1-4.5 mm dia.) the granulosa cells from FF and F+ ewes were more responsive to FSH and/or LH than in ++ ewes with respect to cAMP synthesis and they also had higher levels of aromatase activity. In vivo, the ovarian secretion-rates of oestradiol from greater than or equal to 5 ("oestrogenic") follicles in FF ewes, 3-4 such follicles in F+ ewes, and 1-2 such follicles in ++ animals during the follicular phase were similar. In FF and F+ ewes, the preovulatory follicles ovulated at a smaller diameter (i.e. 3-5 mm) than in ++ ewes (greater than 5 mm diam.) and also produced smaller corpora lutea. Thus, after continual exposure to elevated levels of gonadotrophins, follicles may synthesize steroid and mature at smaller diameters compared to those exposed to normal levels of FSH and LH.  相似文献   

16.
Source of immunoreactive inhibin in the chicken ovary.   总被引:2,自引:0,他引:2  
High concentrations of immunoreactive inhibin were detected in the plasma of the laying domestic hen using a heterologous RIA validated for use in the chicken. Cessation of egg production induced by restricting the intake of nutrients decreased circulating inhibin to approximately 20% of its original concentration within 8 days, indicating that the ovary is the major source of the measured material. Dissection of ovarian follicles revealed that inhibin is nearly exclusively produced in the granulosa cell layer. When expressed per milligram cell protein the concentration of inhibin decreased significantly in granulosa layers of follicles of succeeding order in the hierarchy (F4 to F1). The concentration of progesterone increased in the granulosa layers of the same follicles whereas oestradiol in the surrounding theca layers decreased. In vitro culture of granulosa cells derived from follicles at different stages of development confirmed the decrease in inhibin secretion as a function of follicular growth observed in vivo. The granulosa cell inhibin secretion is stimulated by LH as well as by FSH, the former being the most effective one. The physiological significance of these changes in inhibin concentration during follicular maturation requires further investigation. It may be concluded, however, that the chicken presents a useful model for the study of the endocrine as well as the paracrine function of ovarian inhibin.  相似文献   

17.
This study was designed to compare our previous results on ovarian follicular DNA synthesis by hamsters obtained from Sasco Laboratories with a different breeding colony: Harlan. Follicles from proestrous Harlan hamsters required twice as much [3H] thymidine and a minimum of 4 hr of in vitro exposure to 100 ng of ovine follicle-stimulating hormone (FSH) before a significant increase in DNA synthesis was elicited compared with 30-120 min for the Sasco breed. Peak responsiveness to FSH was observed at 8-hr incubation for the Harlan strain with significant increases in DNA per follicle at 8-12 hr. Both strains increased DNA synthesis with as little as 25 ng of ovine FSH and the response was elicited in all growing follicles, from preantral stages with one to four layers of granulosa cells, lacking theca (Stages 1-4) to mature antral follicles (Stages 8-10). A recombinant bovine FSH, devoid of luteinizing hormone activity, was not as effective as ovine FSH (which has 4% luteinizing hormone contamination) in stimulating DNA synthesis by large preantral and antral follicles. In vitro responsiveness to ovine FSH was abolished in the absence of Ca2+ in the culture medium and 0.05 mM Ca2+ was the optimal amount. For both strains of hamsters, the highest rate of DNA synthesis in response to endogenous gonadotropins was on the morning of estrus--when the second surge of FSH was in progress--and Harlan follicles in vitro also showed maximal stimulation by FSH on this day. Where the two strains differed was that the Harlan strain did not show an increase in follicular DNA synthesis on the afternoon of proestrus--when the preovulatory increase in gonadotropins commenced. When expressed as DNA per follicle, DNA approximately doubled from Stages 1 to 5 and then entered a new growth phase at Stage 6 (large preantral follicles) with a steeper increase. Collectively, these experiments show that strain characteristics can alter the latency and degree of follicular DNA replication in response to endogenous or exogenous FSH.  相似文献   

18.
Prepubertal female rats were injected s.c. with 5.0 IU eCG, and ovaries were collected 24 and 48 h post-eCG, on Day 25, as well as from an untreated group also on Day 25. Large antral follicles were manually dissected, and the ovarian remnants were incubated with collagenase overnight to liberate preantral follicles from adhering stromal cells. The viability of the follicles was established by normal histology and lack of pyknotic granulosa cells (GCs) and by their ability to secrete steroids. After a 1-h baseline incubation, either 10 ng LH or 100 ng FSH was added for an additional hour, and the media-before and after gonadotropin administration-were used to measure progesterone, androstenedione, and estradiol by RIA. A distinct hierarchy existed in steroid synthesis, with the maximal production by the largest (700 microm) antral follicles. The major steroid that had accumulated after addition of LH at 48 h post-eCG was androstenedione (1099 pg/follicle per hour), followed by equal amounts of progesterone (155 pg/follicle per hour) and estradiol (191 pg/follicle per hour). There was a precipitous drop in steroid production by 550-microm and 400-microm antral follicles, especially in estradiol for the latter-sized follicles (0.08 pg/follicle per hour). Preantral follicles also produced progesterone and androstenedione after addition of LH. For example, follicles 222 microm in diameter with 4-5 layers of GCs and well-developed theca responded to LH at 48 h post-eCG by accumulating androstenedione (37 pg/follicle per hour) and progesterone (6 pg/follicle per hour) but negligible estradiol. The smallest follicles secreting steroids, 110-148 microm in diameter, had 2-4 layers of GCs. However, primary follicles (1 layer of GCs and no theca) did not synthesize appreciable amounts of any steroid. Although small preantral follicles were consistently stimulated by LH, FSH was ineffective. This result differs from findings in the hamster showing that intact preantral follicles with 1-4 layers of GCs and no theca respond to FSH by secreting progesterone in vitro (Roy and Greenwald, Biol Reprod 1987; 31:39-46). The technique developed to collect intact rat follicles should be useful for numerous investigations.  相似文献   

19.
Folliculogenesis was studied by assessing development of the largest 10 follicles obtained from 10 sows 48 h after weaning and by analyzing changes in plasma luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin (PRL) for 24 h before weaning until 48 h after weaning. Follicular diameter, follicular fluid volume, and concentrations of estradiol and testosterone and granulosa cell numbers were determined in all follicles, and 125I-hCG binding to theca and granulosa and maximal aromatase activity in vitro was determined in five follicles/sow. Overall, a significant rise in LH, but not in FSH, occurred at weaning, although in individual sows an increase in LH was not necessarily related to subsequent estrogenic activity of follicles. In 9/10 sows, PRL fell precipitously after weaning. In lactation, LH was negatively, and after weaning, positively, correlated with FSH and PRL. Marked variability in follicular development existed within and between sows. Overall, most follicular characteristics were positively correlated to follicular diameter; however, in larger follicles the number of granulosa cells was variable and unrelated to estrogenic activity, which--together with theca and granulosa binding of hCG--increased abruptly at particular stages of follicular development. Differences in maturation of similarly sized follicles from different sows were related to estrogenic activity of the dominant follicles but not to consistent differences in LH, FSH or PRL secretion. Both the dynamics and the control of folliculogenesis in the sow, therefore, appear to be complex.  相似文献   

20.
Manipulation of circulating concentrations of hormones and ovarian follicle status was carried out on Day 11-12 of the oestrous cycle in sheep. All follicles visible on the ovary were ablated by cautery and ewes were treated with oestradiol or ovine follicular fluid (oFF) to suppress FSH or with PMSG to increase circulating gonadotrophic activity. One group underwent unilateral ovariectomy which greatly increased endogenous FSH and was the only treatment which significantly affected LH pulse frequency. The size distribution of antral follicles, the extent of atresia and the mitotic index of granulosa cells of follicles on Day 15 showed that (a) treatment with oFF inhibited the growth of follicles beyond 2 mm diameter by suppressing the mitotic index of the granulosa cells and (b) the concentration of FSH in peripheral plasma was related to the ability of small antral follicles to grow during the late luteal-early follicular phase of the cycle. Subsequently, it was demonstrated that oFF inhibits, in a dose-dependent manner, folliculogenesis sustained by PMSG in ewes on Days 12-15. Inhibition of folliculogenesis was represented by a decrease in those follicles greater than 4 mm, an increase in the relative proportion of follicles less than 2 mm, and minimal change in the average number of follicles visible on the ovarian surface, and a decrease in the mitotic index of granulosa cells of follicles less than 2 mm. There was no change in the extent of atresia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号