首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The ribonucleic acid (RNA) specified by bacteriophage 29 was isolated under conditions which minimized physical and enzymatic degradation, reduced aggregation, and enriched for completed molecules. This RNA was fractionated both by sedimentation through sucrose density gradients and electrophoresis through polyacrylamide gels to measure the size and relative amount of each component. Early RNA consisted of six components of molecular weight 0.75 × 106, 0.44 × 106, 0.37 × 106, 0.25 × 106, 0.09 × 106, and 0.04 × 106, accounting for 35% of the coding capacity of 29 deoxyribonucleic acid (DNA). All of these components except the one at 0.44 × 106 were detected when infection occurred in the presence of chloramphenicol. Synthesis of the major early component (0.75 × 106) ceased shortly after the onset of viral DNA synthesis. The other species of early RNA were synthesized throughout the latent period. Three additional components, 1.75 × 106, 0.93 × 106, and 0.07 × 106, appear at late times. The two large RNAs may be polycistronic messenger RNAs corresponding to the seven viral capsid proteins.  相似文献   

3.
The ribonucleic acid (RNA) bacteriophage phiCb5, which specifically infects only one form of the dimorphic stalked bacterium Caulobacter crescentus, has been obtained in high yield. Since the phage is extremely salt-sensitive, a purification procedure was devised which avoided contact with solutions of high ionic strength. Phage phiCb5 was studied with respect to the physical and chemical properties of both the phage and its RNA. In an electron microscope, the phage particles appear as small polyhedra, 23 nm in diameter. The phage is similar to the Escherichia coli RNA phages in that it (i) sediments at an S(20, w) of 70.6S, (ii) is composed of a single molecule of single-stranded RNA and a protein coat, (iii) contains two structural proteins, and (iv) apparently contains the genetic capacity to code for a coat protein subunit, a maturation-like protein, and an RNA polymerase. Phage phiCb5 differs from the E. coli RNA phages in (i) host specificity, (ii) salt sensitivity, and (iii) the presence of histidine, but not methionine, in the coat protein.  相似文献   

4.
5.
The drug rifampin, when added at the time of infection, inhibits synthesis of the phage Qbeta. Both viral ribonucleic acids and viral proteins are made in nearly the same amount as in the absence of rifampin, but the rate of assembly into phage particles is low.  相似文献   

6.
Fifty-four suppressible mutants of bacteriophage phi29 have been isolated with a variety of mutagens and assigned to eight complementation groups. Viral-specific protein synthesis in UV light-irradiated, nonsuppressing Bacillus subtilis 60084 was analyzed with exponential acrylamide gels. Four additional phi29 proteins which were undetected on ordinary acrylamide gels are reported in this paper. Five phage phi29 proteins have been unambiguously assigned to specific cistrons. Two cistrons had pleiotropic effects on viral protein synthesis. Mutants in cistrons I or II were unable to synthesize DNA in nonsuppressing bacteria. Mutants in cistron I were unable to attach viral chromosomes to the host cell membrane, and the protein responsible for this function has been identified. The other viral protein playing a role in phage phi29 DNA synthesis is also identified and assigned to cistron II. Mutants in cistron II can attach viral chromosomes to membrane, but cannot synthesize DNA in nonsuppressing bacteria.  相似文献   

7.
The structure of Bacillus subtilis bacteriophage phi25 and phi25 deoxyribonucleic acid (DNA) were studied by electron microscopy. The head of phi25 is a regular polyhedron measuring 75 nm in diameter. The uncontracted tail of phi25 is 130 nm in length and includes a large, complex tail plate. Phage phi25 DNA is double-stranded and has a molecular weight of approximately 100 million as determined by electron microscopic length measurements and analytical band sedimentation in CsCl. The complementary strands of phi25 DNA contain numerous random interruptions. Chemical analysis of phi25 DNA demonstrated that 5-hydroxymethyluracil replaces thymine and that the DNA has a mole per cent (guanine plus cytosine) of 42.  相似文献   

8.
The morphology of the intracellular development of bacteriophage phi25 in Bacillus subtilis 168M has been correlated with nucleic acid synthesis in infected cells. Host deoxyribonucleic acid (DNA) synthesis was shut off by a phage-induced enzyme within 5 min after infection, and another phage-mediated function extensively degraded host DNA at the time of cell lysis. Synthesis of phage DNA in infected cells began within 5 min and continued until late in the rise period. After phage DNA synthesis and coinciding with lysis, much of the unpackaged, newly synthesized phage DNA was degraded. Studies of thin sections of phi25 infected cells suggested that unfilled capsids may be precursors to filled capsids in the packaging process. To assess dependence of capsid formation on phage DNA replication, cells were either treated with mitomycin C and infected with normal phage or infected with ultraviolet-irradiated (99% killed) phi25. Only empty capsids were found in these cells, indicating that capsid production may be independent of the presence of newly synthesized viral DNA.  相似文献   

9.
The Caulobacter crescentus bacteriophage phiCbK was studied with respect to the physical and chemical properties of both the phage and its deoxyribonucleic acid (DNA). Electron micrographs reveal the phage to be among the largest DNA bacteriophages reported, with head dimensions of 64 by 195 nm and a flexible tail 275 nm in length. The phage is composed of 57% DNA. This DNA is double-stranded as indicated by (i) the sharp increase in extinction coefficient over a narrow range of temperature increase, (ii) an increase in density in CsCl upon thermal denaturation, and (iii) the equivalence of guanine and cytosine as well as adenine and thymine, determined by chemical analysis. phiCbK DNA cosediments with Escherichia coli phage T2 DNA and has therefore been assigned an S(20,w) value of 63.5S. The size of the phage and its DNA and the percentage of DNA indicate that the phiCbK phage head is relatively loosely packed. The properties of the DNA from bacteriophage phiCbK are similar to those of host C. crescentus DNA with respect to buoyant density, thermal transition point, and guanine plus cytosine content.  相似文献   

10.
With bacteriophage phi29 of Bacillus subtilis 133, suppressor-sensitive (sus) hydroxylamine mutants have been isolated. Intracistronic and intercistronic quantitative complementation placed the mutants in 13 cistrons, and three-factor crosses have been used to assign an unambiguous order for 10 cistrons. Recombination frequencies have been presented for several regions of the genome to facilitate comparison of the sus system with the previously published temperature-sensitive mapping systems.  相似文献   

11.
12.
Physical and Biological Properties of Phage φ29 Deoxyribonucleic Acid   总被引:21,自引:17,他引:4       下载免费PDF全文
Deoxyribonucleic acid (DNA) molecules having a mean length of 5.8 mum were released from purified Bacillus subtilis bacteriophage phi29 with 2 m sodium perchlorate. Small 0.1 to 0.2-mum molecules were also detected in these DNA preparations. Since intact single chains annealed to form linear duplex molecules, phage phi29 DNA was found to be nonpermuted. The molecular weights of single chains of phi29 DNA were approximately half that of native DNA, as determined by analytical band sedimentation in CsCl, indicating that phi29 DNA is composed of two continuous polynucleotide chains. The molecular weight values of native and annealed phi29 DNA from sedimentation agreed with the molecular weight values obtained from electron microscopy. The infectivity of phi29 DNA was reduced to a low level by alkaline denaturation and was partially restored by annealing.  相似文献   

13.
Deoxyribonucleic acid (DNA) synthesis in bacteriophage phi29-infected Bacillus amyloliquefaciens was studied at 37 and 45 C. Infectious intracellular particles appear at the same time at both temperatures, but the average burst size is reduced 45 to 50% at 45 C. There is a transient inhibition of cellular mass increase at 45 C which is not observed at the lower temperature. In addition, the rate of host DNA synthesis is reduced and the onset of viral-specific DNA replication is delayed for 6 to 9 min at 45 C. These findings allowed us to screen phage phi29 mutants which are sensitive to growth at 45 C for their ability to synthesize phi29 DNA in the absence of host DNA replication. We obtained mutants which make no viral DNA, reduced levels of DNA, or normal quantities of DNA under nonpermissive conditions. Pulse-labeled viral DNA which sediments more rapidly than mature phi29 DNA molecules was observed after gentle cell lysis and zone sedimentation. This DNA is not a precursor of normally sedimenting phi29 DNA and apparently consists of mature phi29 DNA molecules aggregated with large pieces of bacterial DNA.  相似文献   

14.
Bacteriophage phi105 is a temperate phage for the transformable Bacillus subtilis 168. The infectivity of deoxyribonucleic acid (DNA) extracted from mature phi105 phage particles, from bacteria lysogenic for phi105 (prophage DNA), and from induced lysogenic bacteria (vegetative DNA) was examined in the B. subtilis transformation system. About one infectious center was formed per 10(8) mature DNA molecules added to competent cells, but single markers could be rescued from mature DNA by a superinfecting phage at a 10(3)- to 10(4)-fold higher frequency. Single markers in mature DNA were inactivated at an exponential rate after uptake by a competent cell. Prophage and vegetative DNA gave about one infectious center per 10(3) molecules added to competent cells. Infectious prophage DNA entered competent cells as a single molecule; it gave a majority of lytic responses. Single markers in sheared prophage DNA were inactivated at the same rate as markers in mature DNA. Prophage DNA was dependent on the bacterial rec-1 function for its infectivity, whereas vegetative DNA was not. The mechanism of transfection of B. subtilis with viral DNA is discussed, and a model for transfection with phi105 DNA is proposed.  相似文献   

15.
The properties of the ribonucleic acid (RNA) polymerase activity which transcribes the major portion of the adenovirus genome were studied. Nuclei were prepared from infected cells and incubated in vitro. Virus-specific RNA was determined by hybridization to adenovirus deoxyribonucleic acid (DNA). Adenovirus DNA is transcribed principally by an activity which resembles closely polymerase II of the host cell. This activity is inhibited by alpha-amanitine and stimulated by (NH(4))(2)SO(4). Its product is high-molecular-weight heterogeneous RNA. The polymerase activity measured early in infection (3 to 5 hr) resembles that found late in infection (16 to 18 hr).  相似文献   

16.
Amino acid control of ribonucleic acid (RNA) synthesis in bacteria is known to be governed genetically by the rel locus. We investigated whether the rel gene of the host would also exert its effect on the regulation of phage-specific RNA synthesis in T4 phage-infected Escherichia coli cells. Since T-even phage infection completely shuts off host macromolecular synthesis, phage RNA synthesis could be followed specifically by the cumulative incorporation of radioactivity from labeled precursors into RNA of infected cells. Labeled uracil was shown to accumulate in phage-specific RNA for 30 to 35 min after infection, a phenomenon which probably reflects an expansion of the labile phage-RNA pool. Amino acid starvation was effected by the use of auxotrophic bacterial strains or thienylalanine. The latter substance is an amino acid analogue which induces a chemical auxotrophy by inhibiting the biosynthesis of phenylalanine, tyrosine, and tryptophan. Phage RNA synthesis was strictly dependent on the presence of amino acids, whereas phage deoxyribonucleic acid synthesis was not. By the use of several pairs of bacterial strains which were isogenic except for the rel gene, it was demonstrated that amino acid dependence was related to the allelic state of this gene. If the rel gene was mutated, amino acid starvation did not restrict phage RNA synthesis.  相似文献   

17.
Growth of phage phi105 and its deoxyribonucleic acid (DNA) was studied in radiation-sensitive mutants of Bacillus subtilis. The recA gene is required for optimal prophage induction with mitomycin C and for infectivity of prophage DNA. rec B gene is required for marker rescue from mature DNA. The importance of bacterial genes for phage DNA activity seems to depend on phage DNA structure.  相似文献   

18.
Four types of phiX-infected cells of Escherichia coli CR, a thymine-requiring strain of E. coli C, were prepared in which the parental replicative-form deoxyribonucleic acid (RF DNA) was labeled with same specific amounts of bromouracil in (i) both strands, (ii) only the infecting viral strand, (iii) only the complementary strand, and (iv) neither strand. The sensitivity of each type of infected cell toward irradiation by ultraviolet light, visible light, and X rays was measured. The results indicate that a certain amount of radiation damage in the infecting viral strand of the parental RF was more inhibitory to the production of progeny phage than when the damage was in the complementary strand. Similar conclusions were also drawn from "suicide" experiments of the phage-infected complexes containing (32)P of the same specific activity on either strand of the parental RF DNA. The results suggest that the beta decay occurring in the infecting viral strand was more effective in inactivating the plaque-forming ability of the complex.  相似文献   

19.
An in vitro complementation reaction leading to the assembly of bacteriophage phi80 tails from component proteins is described. Tail assembly occurs when a lysate of any mutant in cistron 13 is mixed with a second lysate of a mutant in any of the other cistrons involved in tail formation. Lysates of mutants that are blocked in tail formation contain phage heads that can unite with free tails to form infective particles. The rate of the complementation reaction shows little dependence upon temperature, suggesting that the assembly depends largely upon the kinetic encounter of the interacting components. The tail component missing in cistron 13 mutant lysates was purified approximately 55-fold and shown to be, at least in part, a protein having a molecular weight of approximately 22,000. This protein was also released from highly purified infective phi80 particles after osmotic shock followed by heattreatment, suggesting that it most probably is an integral structural protein of the phage tail. Lysates of mutants of bacteriophage lambda that are defective in tail formation were shown to contain a tail component identical with or similar to the phi80 cistron 13 product.  相似文献   

20.
The effects of Escherichia coli exonuclease I, exonuclease III, and deoxyribonucleic acid (DNA) polymerase on the biological activity of mature DNA from temperate Bacillus bacteriophage phi105 were investigated. Intact DNA loses infectivity rapidly upon exposure to exonuclease III. Although there is an overall decrease in marker rescue from exonuclease III-digested DNA, digestion preferentially affects markers at the end of the genetic map. This is taken to indicate a nonpermuted gene sequence in mature DNA. Incubation of mature DNA in the presence of exonuclease I or DNA polymerase has no effect on its biological activity. The possible structure of the ends of mature phi105 DNA is discussed. The rate of digestion of mature phi105 DNA by exonuclease III is only about 1/20 the rate of lambda DNA. Results of digestion of various DNA substrates by exonuclease III indicate that the enzyme distinguishes between different DNA terminal structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号