首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Foxj1 has been found to play an important role in cilia formation and function in vertebrates.The zebrafish or Xenopus genome expresses two Foxj1 genes, foxjla/FoxJ1 and foxj1b/FoxJ1.2. In this study, we have generated a zebrafish transgenic line T2BGSZ10 by Tol2 transposon-based gene trapping approach. T2BGSZ10 transgenic fish carry an insertion of the transposon genome into the first intron of thefoxjl1b locus. This insertion results in GFP expression in the forebrain, otic vesicles, floorplate, pronephric ducts and other domains during embryogenesis, which recaptures the expression pattern offoxjlb. Although normal expression offoxjlb is dramatically reduced,T2BGSZ10 homozygous embryos develop normally and grow to adulthood without detectable defects, which may be due to the incomplete interruption of foxj1b expression. Nevertheless, this transgenic line may serve as a useful model for dynamic observation of GFP-labeled tissues and organs and for isolation of GFP-labeled cells.  相似文献   

4.
5.
6.
《遗传学报》2009,36(1)
Foxj1 has been found to play an important role in cilia formation and function in vertebrates.The zebrafish or Xenopus genome expresses two Foxj1 genes, foxjla/FoxJ1 and foxj1b/FoxJ1.2. In this study, we have generated a zebrafish transgenic line T2BGSZ10 by Tol2 transposon-based gene trapping approach. T2BGSZ10 transgenic fish carry an insertion of the transposon genome into the first intron of thefoxjl1b locus. This insertion results in GFP expression in the forebrain, otic vesicles, floorplate, pronephric ducts and other domains during embryogenesis, which recaptures the expression pattern offoxjlb. Although normal expression offoxjlb is dramatically reduced,T2BGSZ10 homozygous embryos develop normally and grow to adulthood without detectable defects, which may be due to the incomplete interruption of foxj1b expression. Nevertheless, this transgenic line may serve as a useful model for dynamic observation of GFP-labeled tissues and organs and for isolation of GFP-labeled cells.  相似文献   

7.
8.
Axes formation is a fundamental process of early embryonic development. In addition to the anteroposterior and dorsoventral axes, the determination of the left-right axis is crucial for the proper morphogenesis of internal organs and is evolutionarily conserved in vertebrates. Genes known to be required for the normal establishment and/or maintenance of left-right asymmetry in vertebrates include, for example, components of the TGF-beta family of intercellular signalling molecules and genes required for node and midline function. We report that Notch signalling, which previously had not been implicated in this morphogenetic process, is required for normal left-right determination in mice. We show, that the loss-of-function of the delta 1 (Dll1) gene causes a situs ambiguous phenotype, including randomisation of the direction of heart looping and embryonic turning. The most probable cause for this left-right defect in Dll1 mutant embryos is a failure in the development of proper midline structures. These originate from the node, which is disrupted and deformed in Dll1 mutant embryos. Based on expression analysis in wild-type and mutant embryos, we suggest a model, in which Notch signalling is required for the proper differentiation of node cells and node morphology.  相似文献   

9.
Foxj1 has been found to play an important role in cilia formation and function in vertebrates. The zebrafish or Xenopus genome expresses two Foxjl genes, foxjlalFoxJ1 and foxjlb/FoxJ1.2. In this study, we have generated a zebrafish transgenic line T2BGSZIO by Tol2 transposon-based gene trapping approach. T2BGSZ10 transgenic fish carry an insertion of the transposon genome into the first intron of thefoxj1b locus. This insertion results in GFP expression in the forebrain, otic vesicles, floorplate, pronephric ducts and other domains during embryogenesis, which recaptures the expression pattern offoxj1b. Although normal expression offoxj1b is dramatically reduced, T2BGSZ10 homozygous embryos develop normally and grow to adulthood without detectable defects, which may be due to the incomplete interruption of foxjlb expression. Nevertheless, this transgenic line may serve as a useful model for dynamic observation of GFP-labeled tissues and organs and for isolation of GFP-labeled cells.  相似文献   

10.
A variety of TGF-beta-related ligands regulate the left-right asymmetry of vertebrates but the involvement of TGF-betas in left-right specification has not been reported. We assessed whether TGF-beta signaling is involved in the left-right specification of Xenopus post-gastrula embryos by microinjecting Xenopus TGF-beta5 protein into the left or right flank of neurula-tailbud embryos. Injection on the right side of neurulae caused left-right reversal of the internal organs in 93% of the embryos, while injection on the left side caused less than 5% left-right reversal. Expression of Xenopus nodal related-1 (Xnr-1 ), Xenopus antivin and Xenopus Pitx2, which are normally expressed on the left, was unaltered by the left-side injection. In contrast, right-side injection into neurulae induced the expression of these genes predominantly on the right side. Right-side injection into tailbud embryos caused bilateral expression of these handed genes. Time course analysis of asymmetric gene expression revealed that Xnr-1 could be induced by TGF-beta5 at late neurula stage, while antivin and Pitx2 could be induced by TGF-beta5 at the latertail bud stage. Injection of the antisense morpholino oligonucleotide against Xenopus TGF-beta5 into the left dorsal blastomere inhibited the normal left-handed expression of Xnr-1 and Pitx2, and caused the organ reversal in the injected embryos. These results suggest that normal left-right balance of endogenous TGF-beta5 signaling in the neurula embryo may be needed to determine the laterality of the asymmetric genes and to generate the correct left-right axis.  相似文献   

11.
Specification of the left-right axis during embryonic development is critical for the morphogenesis of asymmetric organs such as the heart, lungs, and stomach. The first known left-right asymmetry to occur in the mouse embryo is a leftward fluid flow in the node that is created by rotating cilia on the node surface. This flow is followed by asymmetric expression of Nodal and its inhibitor Cerl2 in the node. Defects in cilia and/or fluid flow in the node lead to defective Nodal and Cerl2 expression and therefore incorrect visceral organ situs. Here we show the cilia protein Arl13b is required for left right axis specification as its absence results in heterotaxia. We find the defect originates in the node where Cerl2 is not downregulated and asymmetric expression of Nodal is not maintained resulting in symmetric expression of both genes. Subsequently, Nodal expression is delayed in the lateral plate mesoderm (LPM). Symmetric Nodal and Cerl2 in the node could result from defects in either the generation and/ or the detection of Nodal flow, which would account for the subsequent defects in the LPM and organ positioning.  相似文献   

12.
13.
Recent studies have revealed that a cilium-generated liquid flow in the node has a crucial role in the establishment of the left-right (LR) axis in the mouse. In fish, Kupffer's vesicle (KV), a teleost-specific spherical organ attached to the tail region, is known to have an equivalent role to the mouse node during LR axis formation. However, at present, there has been no report of an asymmetric gene expressed in KV under the control of fluid flow. Here we report the earliest asymmetric gene in teleost KV, medaka charon, and its regulation. Charon is a member of the Cerberus/DAN family of proteins, first identified in zebrafish. Although zebrafish charon was reported to be symmetrically expressed in KV, medaka charon displays asymmetric expression with more intense expression on the right side. This asymmetric expression was found to be regulated by KV flow because symmetric and up-regulated charon expression was observed in flow-defective embryos with immotile cilia or disrupted KV. Taken together, medaka charon is a reliable gene marker for LR asymmetry in KV and thus, will be useful for the analysis of the early steps downstream of the fluid flow.  相似文献   

14.
Inversin (Inv), a protein that contains ankyrin repeats, plays a key role in left-right determination during mammalian embryonic development, but its precise function remains unknown. Transgenic mice expressing an Inv and green fluorescent protein (GFP) fusion construct (Inv::GFP) were established to facilitate characterization of the subcellular localization of Inv. The Inv::GFP transgene rescued the laterality defects and polycystic kidney disease of Inv/Inv mice, indicating that the fusion protein is functional. In transgenic embryos, Inv::GFP protein was detected in the node monocilia. The fusion protein was also present in other 9+0 monocilia, including those of kidney epithelial cells and the pituitary gland, but it was not localized to 9+2 cilia. The N-terminal region of Inv (InvDeltaC) including the ankyrin repeats also localized to the node cilia and rescued the left-right defects of Inv/Inv mutants. Although no obvious abnormalities were detected in the node monocilia of Inv/Inv embryos, the laterality defects of such embryos were corrected by an artificial leftward flow of fluid in the node, suggesting that nodal flow is impaired by the Inv mutation. These results suggest that the Inv protein contributes to left-right determination as a component of monocilia in the node and is essential for the generation of normal nodal flow.  相似文献   

15.
In Foxj1 knockout mice, half show situs solitus while the other half show situs inversus, which means a random determination of the left-right axis. In contrast, the inv mutant mice show a mirror-image configuration of the internal organs, which means a reversal of the left-right axis. Although these two mutant mice have primary cilia on the nodal cells, their phenotypes are different in laterality determination. We thus made Foxj1/inv double mutant mice and analyzed their phenotype. We found the phenotypes of Foxj1/inv double mutant mice to be more similar to those of the Foxj1 mutant mice than those of the inv mutant mice. We also found right pulmonary isomerism to be a major phenotype of the Foxj1 mutant mice and the Foxj1/inv double mutant mice, which is likely due to the absence of the Pitx2 expression at both lateral plate mesoderms. These results indicate that a random signal of laterality (Foxj1) is dominant over the reversal signal of laterality (Inv).  相似文献   

16.
17.
In mammals, left-right (L-R) asymmetry is established by posteriorly oriented cilia driving a leftwards laminar flow in the embryonic node, thereby activating asymmetric gene expression. The two-cilia hypothesis argues that immotile cilia detect and respond to this flow through a Pkd2-mediated mechanism; a putative sensory partner protein has, however, remained unidentified. We have identified the Pkd1-related locus Pkd1l1 as a crucial component of L-R patterning in mouse. Systematic comparison of Pkd1l1 and Pkd2 point mutants reveals strong phenocopying, evidenced by both morphological and molecular markers of sidedness; both mutants fail to activate asymmetric gene expression at the node or in the lateral plate and exhibit right isomerism of the lungs. Node and cilia morphology were normal in mutants and cilia demonstrated typical motility, consistent with Pkd1l1 and Pkd2 activity downstream of nodal flow. Cell biological analysis reveals that Pkd1l1 and Pkd2 localise to the cilium and biochemical experiments demonstrate that they can physically interact. Together with co-expression in the node, these data argue that Pkd1l1 is the elusive Pkd2 binding partner required for L-R patterning and support the two-cilia hypothesis.  相似文献   

18.
19.
In the early mouse embryo monocilia on the ventral node rotate to generate a leftward flow of fluid. This nodal flow is essential for the left-sided expression of nodal and pitx2, and for subsequent asymmetric organ patterning. Equivalent left fluid flow has been identified in other vertebrates, including Xenopus and zebrafish, indicating it is an ancient vertebrate mechanism. Asymmetric nodal and Pitx expression have also been identified in several invertebrates, including the vertebrates' nearest relatives, the urochordates. However whether cilia regulate this asymmetric gene expression remains unknown, and previous studies in urochordates have not identified any cilia prior to the larval stage, when asymmetry is already long established. Here we use Scanning and Transmission Electron Microscopy and immunofluorescence to investigate cilia in the urochordate Ciona intestinalis. We show that single cilia are transiently present on each ectoderm cell of the late neurula/early tailbud stage embryo, a time point just before onset of asymmetric nodal expression. Mapping the position of each cilium on these cells shows they are posteriorly positioned, something also described for mouse node cilia. The C. intestinalis cilia have a 9+0 ring ultrastructure, however we find no evidence of structures associated with motility such as dynein arms, radial spokes or nexin. Furthermore the 9+0 ring structure becomes disorganised immediately after the cilia have exited the cell, indicative of cilia which are not capable of motility. Our results indicate that although cilia are present prior to molecular asymmetries, they are not motile and hence cannot be operating in the same way as the flow-generating cilia of the vertebrate node. We conclude that the cilia may have a role in the development of C. intestinalis left-right asymmetry but that this would have to be in a sensory capacity, perhaps as mechanosensors as hypothesised in two-cilia physical models of vertebrate cilia-driven asymmetry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号