首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A refolding strategy was described for on-column refolding of recombinant human interferon-gamma (rhIFN-gamma) inclusion bodies by expanded bed adsorption (EBA) chromatography. After the denatured rhIFN-gamma protein bound onto the cation exchanger of STREAMLINE SP, the refolding process was performed in expanded bed by gradually decreasing the concentration of urea in the buffer and the refolded rhIFN-gamma protein was recovered by the elution in packed bed mode. It was demonstrated that the denatured rhIFN-gamma protein could be efficiently refolded by this method with high yield. Under appropriate experimental conditions, the protein yield and specific activity of rhIFN-gamma was up to 52.7% and 8.18 x 10(6) IU/mg, respectively.  相似文献   

2.
Interleukin-4 (IL4) is a multifunctional cytokine which plays a key role in the immune system. Several antagonists/agonists of IL4 are reported through mutagenesis studies, but their solution structural studies using nuclear magnetic resonance (NMR) spectroscopy are hindered as milligram quantities of isotopically labeled protein are required for structural refinements. In this work, a His-tagged recombinant form of human IL4 was overexpressed in Escherichia coli under the control of a T7 promoter. The resulting inclusion bodies were separated from cellular debris by centrifugation and solubilized by 6M guanidine-HCl in the presence of reducing agents. The denatured IL4 was immobilized on Ni2+-fractogel beads and refolded in a single chromatographic step by gradual removal of denaturant. This protocol yielded 15-20 mg of isotope-enriched protein from 1L of culture grown in minimal medium. The refolded protein was highly pure and was correctly folded as judged by its two-dimensional NMR spectrum. To show the successful application of this refolding protocol to IL4 variants, 15N-labeled Y124D-IL4 was also prepared and its first two-dimensional NMR spectrum was presented.  相似文献   

3.
DsbA (disulfide bond formation protein A) located in the periplasm of Escherichia coli is a disulfide isomerase, which is vital to disulfide bonds formation directly affecting the nascent peptides folding to the correct conformation. In this paper, recombinant DsbA was firstly immobilized onto NHS-activated Sepharose Fast Flow gel. Then Sephadex G-100 gel was sequentially packed on the top of recDsbA Sepharose Fast Flow, and a so-called conjoint chromatography column composed of SEC and immobilized recombinant DsbA was constructed. Denatured lysozyme was applied on the conjoint column. The effect of SEC volume, flow rate, loading amount and volume, pre-equilibrium mode and KCl concentration in the buffer on lysozyme refolding were investigated in detail and the stability of DsbA immobilization was evaluated. Finally the reusability of the conjoint refolding column was also tested. When loading 2.4 mg denatured lysozyme in 0.5 ml solution, the activity recovery reached 92.7% at optimized experimental conditions, and the conjoint column renaturation capacity decreased only 7.7% after six run reuse due to the use of SEC section in the chromatographic refolding process. The conjoint chromatography offers an efficient strategy to refold proteins in vitro with high productivity and column reusability.  相似文献   

4.
Interferon-lambda1 (IFN-lambda1) is a member of the recently discovered type III IFNs (IFN-lambda), which possesses antiviral, antitumor, and immunomodulatory activities. In this study, the recombinant human IFN-lambda1 containing a hexahistidine tag was expressed in Escherichia coli. IFN-lambda1 was overexpressed under the control of T7 promoter and most of the protein existed in the form of inclusion bodies. The expressed insoluble protein was solubilized with urea, purified and refolded by one-step immobilized metal-ion affinity chromatography using Ni(2+)-nitrilotriacetic acid agarose. The purified IFN-lambda1 appeared as a single band on SDS-PAGE and the purity was more than 95%. The yield was 86 mg IFN-lambda1 from 1L of bacterial culture. Western blotting and N-terminal sequencing confirmed the identity of the purified protein. The purified IFN-lambda1 exhibited specific antiviral activity as demonstrated by a cytopathic effect reduction assay. Thus, this on-column refolding method provides an efficient way to obtain an active IFN-lambda1 with high yield and high purity.  相似文献   

5.
The EC-SOD cDNA was cloned by polymerase chain reaction (PCR) and inserted into the Escherichia coli expression plasmid pET-28a( ) and transformed into E. coli BL21 (DE3). The corresponding protein that was overexpressed as a recombinant His6-tagged EC-SOD was present in the form of inactive inclusion bodies. This structure was first solubilized under denaturant conditions (8.0 M urea). Then, after a capture step using immobilized metal affinity chromatography (IMAC), a gradual refolding of the protein was performed on-column using a linear urea gradient from 8.0 M to 1.5 M in the presence of glutathione (GSH) and oxidized glutathione (GSSG). The mass ratio of GSH to GSSG was 4:1. The purified enzyme was active,showing that at least part of the protein was properly refolded. The protein was made concentrated by ultrafiltration, and then isolated using Sephacryl S-200 HR. There were two protein peaks in the A280 profile.Based on the results of electrophoresis, we concluded that the two fractions were formed by protein subunits of the same mass, and in the fraction where the molecular weight was higher, the dimer was formed through the disulfide bond between subunits. Activities were detected in the two fractions, but the activity of the dimer was much higher than that of the single monomer. The special activities of the two fractions were found to be 3475 U/mg protein and 510 U/mg protein, respectively.  相似文献   

6.
We have applied an efficient solid-phase protein refolding method to the milligram scale production of natively folded recombinant chemokine proteins. Chemokines are intensely studied proteins because of their roles in immune system regulation, response to inflammation, fetal development, and numerous disease states including, but not limited to, HIV-1/AIDS, cancer metastasis, Crohn's disease, asthma and arthritis. Many investigators use recombinant chemokines for research purposes, however these proteins partition almost exclusively to the inclusion body fraction when produced in Escherichia coli. A major hurdle is to correctly refold the chemokine and oxidize the two highly conserved disulfide bonds found in nearly all chemokines. Conventional methods for oxidation and refolding by dialysis or extreme dilution are effective but slow and yield large volumes of dilute chemokine. Here we use an on-column approach for rapid refolding and oxidation of four chemokines, CXCL12/SDF-1alpha (stromal cell-derived factor-1alpha), CCL5/RANTES, XCL1/lymphotactin, and CX3CL1/fractalkine. NMR spectra of SDF-1alpha, RANTES, lymphotactin, and fractalkine indicate these chemokines adopt native structures. On-column refolded SDF-1alpha is fully active in an intracellular calcium flux assay. Our success with multiple SDF-1alpha mutants and members of all four chemokine subfamilies suggests that on-column refolding is a robust method for preparative-scale production of recombinant chemokine proteins.  相似文献   

7.
An exopolyphosphatase gene has been cloned by polymerase chain reaction (PCR) from Trypanosoma brucei and the corresponding protein overexpressed as a recombinant His-tag (histidine tag) exopolyphosphatase in E. coli in order to characterize its biochemical activity and to produce antibody to determine its localization. Because overexpression of this protein in bacteria resulted in the formation of inactive inclusion bodies, these structures were first solubilized in denaturant condition (6 M urea). Secondly, after a capture step using immobilized metal affinity chromatography (IMAC), a gradual refolding of the protein was performed on-column from 6 M to 0 M urea in the presence of 1% Triton X-100. Triton X-100 was used to abolish protein aggregation during the refolding step. The purified enzyme was active, demonstrating that at least part of the proteins was properly refolded.  相似文献   

8.
C-terminal fragment of a human oncofetal alpha-fetoprotein (AFP) may be used in targeted cytostatics delivery to malignant cells of many tumors. AFP fragment (from 404 to 595 amino acids residues of a full-sized protein) was cloned and produced in Escherichia coli cells, BL21 strain (DE3) in the form of inclusion bodies. To obtain a functionally active protein, is it necessary to renature the protein. The renaturation procedure of the AFP third domain (rAFP3D) is considerably complicated by the fact that the protein is hydrophobic and contains a large number of S-S bonds. A renaturation technique of rAFP3D immobilized on silicic metal chelate resin has been developed. The yield of renatured C-terminal fragment was no less than 60% with purity on the order of 98%. The developed technique has been applied for the first time for hydrophobic protein with a large number of S-S bonds. The approach can be applied for efficient renaturation of other hydrophobic proteins with a large number of disulfide bonds for scientific and practical purposes.  相似文献   

9.
A method for the production and purification of biologically active recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF), expressed in Escherichia coli, has been developed. Washing of an inclusion body fraction which allows the removal of numerous ballast proteins and on-column refolding of rhGM-CSF are specific characteristics of the method. The refolding efficiency reached 70%; the purity of the preparation constituted 95%. The biological activity was similar to those of other recombinant hGM-CSF analogs.  相似文献   

10.
Cycloamylose as an efficient artificial chaperone for protein refolding   总被引:7,自引:0,他引:7  
High molecular weight cyclic alpha-1,4-glucan (referred to as cycloamylose) exhibited an artificial chaperone property toward three enzymes in different categories. The inclusion properties of cycloamylose effectively accommodated detergents, which keep the chemically denatured enzymes from aggregation, and promoted proper protein folding. Chemically denatured citrate synthase was refolded and completely recovered it's enzymatic activity after dilution with polyoxyethylenesorbitan buffer followed by cycloamylose treatment. The refolding was completed within 2 h, and the activity of the refolded citrate synthase was quite stable. Cycloamylose also promoted the refolding of denatured carbonic anhydrase B and denatured lysozyme of a reduced form.  相似文献   

11.
12.
Sites of phosphorylation in recombinant human interferon-gamma   总被引:1,自引:0,他引:1  
Recombinant human interferon-gamma was phosphorylated with ATP and c-AMP-dependent protein kinase. After phosphorylation, interferon-gamma was separated from the adenosine phosphates and the kinase and analyzed by SDS-PAGE, reverse phase HPLC, and HPLC peptide mapping. Comparison of the S. aureus V8 protease maps of intact and phosphorylated interferon-gamma showed that the maps were identical except that one peptide fragment elutes earlier in the map of the phosphorylated sample. This peptide was identified as the C-terminal fragment containing two serinyl phosphorylation sites at positions 132 and 142. This phosphorylated interferon-gamma exhibited a slightly higher specific antiviral activity than the intact protein.  相似文献   

13.
Interleukin-15 receptor alpha-chain (IL-15Ralpha) is a member of the new cytokine receptor family, which possesses the sushi domain. To investigate the biochemical and biophysical characteristics of soluble human IL-15Ralpha (shIL-15Ralpha), shIL-15Ralpha was recombinantly expressed in Escherichia coli. The shIL-15Ralpha containing a six histidine-tag was expressed as inclusion bodies, which were solubilized with urea, immobilized on a Ni-nitrilotriacetic acid column, and refolded by a decreasing gradient of urea concentration. The refolded shIL-15Ralpha exhibited a highly flexible structure, neutralized human interleukin-15-induced cell proliferation effectively, and bound to its ligand with the same affinity as human IL-15Ralpha on the cell surface, as demonstrated by circular dichroism, a cell proliferation assay, and surface plasmon resonance, respectively. Thus, we succeeded in refolding shIL-15Ralpha to an active form on an affinity column.  相似文献   

14.
A hexahistidine tag was fused to the N-terminus of apoaequorin. A suitable vector encoding the fusion protein was constructed and used for transformation of Escherichia coli JM109 cells. Apoaequorin was overexpressed under the control of tac promoter. It was found, however, that most of the protein existed in the form of inclusion bodies. Inclusion bodies were solubilized with urea, followed by purification and refolding of (His)(6)-apoaequorin in a single chromatographic step by immobilized metal-ion affinity chromatography using Ni(2+)-nitrilotriacetic acid agarose. The purity, as determined by SDS-PAGE analysis, was greater than 80%. The yield was 0.7-1 mg apoaequorin from a 50 ml bacterial culture. The kinetics of light emission of purified aequorin upon addition of Ca(2+) was typical of the commercial aequorin. The luminescence of the purified aequorin was a linear function of its concentration extending over six orders of magnitude. As low as 0.5 attomoles purified aequorin gave a signal-to-noise ratio of 1.8.  相似文献   

15.
Artificial chaperone (AC) containing cetyltrimethylammonium bromide (CTAB) and β-cyclodextrin (β-CD) has been used to refold recombinant ribonuclease A (RNase A) from inclusion bodies (IBs). At low urea concentration (0.8 M), the AC could enhance the refolding yield of RNase A by effectively suppressing its intermolecular interaction-induced aggregation. As a result, 0.9 mg/mL RNase A could be 77% refolded, which was a 57% increase as compared to that without the AC. At high protein concentration range (0.9–2.3 mg/mL in total protein concentrations) and 1.6 M urea, CTAB selectively precipitated contaminant proteins distinctly, so a purification effect was achieved. For example, 1.5 mg/mL RNase A could be 62% refolded and recovered at a purity of 87%, which was a 34% increase in purity as compared to that in IBs (65%). The precipitation selectivity was considered due to the differences in the hydrophobicity of the proteins. The work indicates that by using the AC, RNase A could be efficiently refolded at low urea concentration and purified at high urea concentration from IBs at high protein concentrations.  相似文献   

16.
Prion protein has a key role in the occurrence of transmissible spongiform encephalopathy (TSE) and development of these diseases. Here, we provide a convenient procedure for on-column purification and refolding of the full-length mature bovine prion protein (bPrP) from Escherichia coli using immobilized metal (Ni) affinity chromatography, based on the metal-binding property of its unusual octarepeat sequences containing six tandem copies. Following extensive washing, the bPrP pellet was solubilized by guanidine hydrochloride and subjected to Ni-NTA agarose column. Purification and refolding were achieved by stepwise gradient washing with reduced guanidine hydrochloride concentrations. Triton X-100 and beta-mercaptoethanol were required in this rapid refolding process. The isolated prion protein was identified by monoclonal antibodies and its integrity was monitored by mass spectroscopy. Its correct folding was confirmed from circular dichroism (CD) experiments. Moreover, thioflavin T-binding assay showed that the recombinant bPrP could be transformed into amyloid fiber structures like that of the infectious prion isoform PrP(sc).  相似文献   

17.
Procathepsin D is a precursor of the human lysosomal protease cathepsin D. Due to its short half-life, procathepsin D is difficult to obtain in quantities sufficient to allow structural and enzymatic studies. To obtain large quantities of this precursor, procathepsin D was expressed using the T7 promoter vector pET3a in bacteria that carry a chromosomal copy of the T7 RNA polymerase gene under the control of the lac promoter. At high cell density in rich medium, basal levels of T7 RNA polymerase were sufficient to express recombinant procathepsin D without addition of an exogenous inducer of the lac promoter. The recombinant protein, constituting almost half of the total cell protein, accumulated in intracytoplasmic inclusion bodies and was isolated from the insoluble fraction of lysed cells. Antibodies prepared against the purified recombinant protein were shown to crossreact with native human placental and porcine spleen cathepsin D. Recombinant procathepsin D was solubilized in denaturants and was refolded. After extended preincubation of the denatured protein at acid pH to allow folding and activation of the zymogen, pepstatin inhibitable catalytic proteolysis was detected. These data demonstrated that the glycosylated aspartic protease, procathepsin D can be refolded and activated in an unglycosylated form and thus provides a system for the study of procathepsin D structure and function.  相似文献   

18.
An attempt was made to prepare a highly purified, active recombinant DNA-derived human interferon-gamma. When the protein was denatured in urea and refolded, gel filtration and sedimentation velocity experiments indicated the presence of two forms, which are different in size and are not in a rapid reversible equilibrium. The two forms could be chromatographically separated. Far-UV circular dichroic spectra indicated the presence of secondary structures for both forms. Near-UV circular dichroic spectra revealed that the smaller form is folded into a rigid tertiary structure. The antiviral activity of the two forms of interferon-gamma showed a significant difference, i.e. the smaller form was 4-8-fold more active than the larger form. A variety of experiments show that the smaller form is more active, homogeneous, soluble, and stable than the larger form.  相似文献   

19.
Kojima S  Iwahara A  Yanai H 《FEBS letters》2005,579(20):4430-4436
Pleurotus ostrearus proteinase A inhibitor 1 (POIA1), which was discovered as a protease inhibitor, is unique in that it shows sequence homology to the propeptide of subtilisin, which functions as an intramolecular of a cognate protease. In this study, we demonstrate that POIA1 can function as an intramolecular chaperone of subtilisin by in vitro and in vivo experiments. The specific cleavage between POIA1 and the mature region of subtilisin BPN' occurred in a refolding process of a chimera protein, and Bacillus cells transformed with a chimera gene formed a halo on a skim milk plate. The mutational analyses of POIA1 in the chimera protein suggested that the tertiary structure of POIA1 is required for such a function, and that an increase in its ability to bind to subtilisin BPN' makes POIA1 a more effective intramolecular chaperone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号