首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
SNAREs are the core machinery mediating membrane fusion. In this review, we provide an update on the recent progress on SNAREs regulating membrane fusion events, especially the more detailed fusion processes dissected by well‐developed biophysical methods and in vitro single molecule analysis approaches. We also briefly summarize the relevant research from Chinese laboratories and highlight the significant contributions on our understanding of SNARE‐mediated membrane trafficking from scientists in China.   相似文献   

3.
Apolipoprotein E4 (apoE4) encoded by epsilon 4 allele is a strong genetic risk factor for Alzheimer's disease (AD). ApoE4 carriers have accelerated amyloid beta-protein (A beta) deposition in their brains, which may account for their unusual susceptibility to AD. We hypothesized that the accelerated A beta deposition in the brain of apoE4 carriers is mediated through cholesterol-enriched low-density membrane (LDM) domains. Thus, the concentrations of A beta and various lipids in LDM domains were quantified in the brains of homozygous apoE3 and apoE4 knock-in (KI) mice, and in the brains of those mice bred with beta-amyloid precursor protein (APP) transgenic mice (Tg2576). The A beta 40 and A beta 42 concentrations and the A beta 42 proportions in LDM domains did not differ between apoE3 and apoE4 KI mice up to 18 months of age. The A beta 40 concentration in the LDM domains was slightly, but significantly higher in apoE3/APP mice than in apoE4/APP mice. The lipid composition of LDM domains was modulated in an apoE isoform-specific manner, but its significance for A beta deposition remains unknown. These data show that the apoE isoform-specific effects on the A beta concentration in LDM domains do not occur in KI mouse models.  相似文献   

4.
FM1-43, a fluorescent styryl dye that penetrates into and stains membranes, was used to investigate kinetics of constitutive endocytosis and to visualize the fate of endocytic organelles in resting and activated human T lymphocytes. The rate of dye accumulation was strongly temperature dependent and approximately 10-fold higher in activated than in resting T cells. Elevation of cytosolic free Ca2+ concentration with thapsigargin or ionomycin further accelerated the rate of FM1-43 accumulation associated with cytosolic actin polymerization. Direct modulation of actin polymerization affected membrane trafficking. Actin condensation beneath the plasma membrane with calyculin A abolished FM1-43 internalization, whereas actin depolymerization with cytochalasin D had no effect. Photoconversion of DAB by FM1-43 revealed altered endocytic compartment targeting associated with T cell activation. Internalized cargo was carried to lysosome-like compartments in resting T cells and to multivesicular bodies (MVB) in activated T cells. Externalization of exosomes from MVB occurred commonly in activated but not in resting T cells. T cell exosomes contained raft-associated CD3 proteins, GM1 glycosphingolipids, and phosphatidylserine at the outer membrane leaflet. The present study demonstrates the utility of FM1-43 as a marker of membrane trafficking in T cells and reveals possible mechanisms of its modulation during T cell activation.  相似文献   

5.
Function and dysfunction of the PI system in membrane trafficking   总被引:1,自引:0,他引:1  
The phosphoinositides (PIs) function as efficient and finely tuned switches that control the assembly–disassembly cycles of complex molecular machineries with key roles in membrane trafficking. This important role of the PIs is mainly due to their versatile nature, which is in turn determined by their fast metabolic interconversions. PIs can be tightly regulated both spatially and temporally through the many PI kinases (PIKs) and phosphatases that are distributed throughout the different intracellular compartments. In spite of the enormous progress made in the past 20 years towards the definition of the molecular details of PI–protein interactions and of the regulatory mechanisms of the individual PIKs and phosphatases, important issues concerning the general principles of the organisation of the PI system and the coordination of the different PI-metabolising enzymes remain to be addressed. The answers should come from applying a systems biology approach to the study of the PI system, through the integration of analyses of the protein interaction data of the PI enzymes and the PI targets with those of the ‘phenomes' of the genetic diseases that involve these PI-metabolising enzymes.  相似文献   

6.
The ER/Golgi soluble NSF attachment protein receptor (SNARE) membrin, rsec22b, and rbet1 are enriched in approximately 1-micrometer cytoplasmic structures that lie very close to the ER. These appear to be ER exit sites since secretory cargo concentrates in and exits from these structures. rsec22b and rbet1 fused to fluorescent proteins are enriched at approximately 1-micrometer ER exit sites that remained more or less stationary, but periodically emitted streaks of fluorescence that traveled generally in the direction of the Golgi complex. These exit sites were reused and subsequent tubules or streams of vesicles followed similar trajectories. Fluorescent membrin- enriched approximately 1-micrometer peripheral structures were more mobile and appeared to translocate through the cytoplasm back and forth, between the periphery and the Golgi area. These mobile structures could serve to collect secretory cargo by fusing with ER-derived vesicles and ferrying the cargo to the Golgi. The post-Golgi SNAREs, syntaxin 6 and syntaxin 13, when fused to fluorescent proteins each displayed characteristic patterns of movement. However, syntaxin 13 was the only SNARE whose life cycle appeared to involve interactions with the plasma membrane. These studies reveal the in vivo spatiotemporal dynamics of SNARE proteins and provide new insight into their roles in membrane trafficking.  相似文献   

7.
Among an increasing number of lipid-binding domains, a group that not only binds to membrane lipids but also changes the shape of the membrane has been found. These domains are characterized by their strong ability to transform globular liposomes as well as flat plasma membranes into elongated membrane tubules both in vitro and in vivo. Biochemical studies on the structures of these proteins have revealed the importance of the amphipathic helix, which potentially intercalates into the lipid bilayer to induce and/or sense membrane curvature. Among such membrane-deforming domains, BAR and F-BAR/EFC domains form crescent-shaped dimers, suggesting a preference for a curved membrane, which is important for curvature sensing. Bioinformatics in combination with structural analyses has been identifying an increasing number of novel families of lipid-binding domains. This review attempts to summarize the evidence obtained by recent studies in order to gain general insights into the roles of membrane-deforming domains in a variety of biological events.  相似文献   

8.
Ligand-mediated endocytosis is an important regulatory mechanism of epidermal growth factor (EGF) receptor (EGFR) signal transduction. Coordinated EGFR internalization and degradation function to regulate the spatial and temporal components of EGFR-effector interactions. In an effort to better understand the molecular mechanisms that control these events, we examined the role of rab5 in the endocytic trafficking of the EGFR. Rab5 is a 25-kDa guanine nucleotide binding protein that has previously been shown to be involved in the early stages of endocytic trafficking. Using adenovirally expressed dominant negative and constitutively active rab5 [rab5(S34N) and rab5(Q79L)] in cells with endogenous EGFRs, we have found that the guanine nucleotide binding state of rab5 has no bearing on the rate of EGFR endocytosis. However, expression of dominant negative rab5 affects downstream endocytic trafficking by slowing the ligand-induced disappearance of total cellular EGFR. Using confocal microscopy to examine EGF/EGFR and rab5 localization indicates that the activity of rab5 governs whether internalized EGF/EGFR and rab5 co-localize. Transferrin, which internalizes via a constitutively internalized cell surface receptor, co-sediments with rab5(WT), but not rab5(S34N) on sucrose gradients. Taken together, these data are consistent with rab5 functioning to regulate intracellular endocytic trafficking distal from the plasma membrane.  相似文献   

9.
The internalization of essential nutrients, lipids and receptors is a crucial process for all eukaryotic cells. Accordingly, endocytosis is highly conserved across cell types and species. Once internalized, small cargo-containing vesicles fuse with early endosomes (also known as sorting endosomes), where they undergo segregation to distinct membrane regions and are sorted and transported on through the endocytic pathway. Although the mechanisms that regulate this sorting are still poorly understood, some receptors are directed to late endosomes and lysosomes for degradation, whereas other receptors are recycled back to the plasma membrane; either directly or through recycling endosomes. The Rab family of small GTP-binding proteins plays crucial roles in regulating these trafficking pathways. Rabs cycle from inactive GDP-bound cytoplasmic proteins to active GTP-bound membrane-associated proteins, as a consequence of the activity of multiple specific GTPase-activating proteins (GAPs) and GTP exchange factors (GEFs). Once bound to GTP, Rabs interact with a multitude of effector proteins that carry out Rab-specific functions. Recent studies have shown that some of these effectors are also interaction partners for the C-terminal Eps15 homology (EHD) proteins, which are also intimately involved in endocytic regulation. A particularly interesting example of common Rab-EHD interaction partners is the MICAL-like protein, MICAL-L1. MICAL-L1 and its homolog, MICAL-L2, belong to the larger MICAL family of proteins, and both have been directly implicated in regulating endocytic recycling of cell surface receptors and junctional proteins, as well as controlling cytoskeletal rearrangement and neurite outgrowth. In this review, we summarize the functional roles of MICAL and Rab proteins, and focus on the significance of their interactions and the implications for endocytic transport.  相似文献   

10.
A fundamental question of eukaryotic cell biology is how membrane organelles are organised and interact with each other. Cell biologists address these questions by characterising the structural features of membrane compartments and the mechanisms that coordinate their exchange. To do so, they must rely on variety of cargo molecules and treatments that enable targeted perturbation, localisation, and labelling of specific compartments. In this context, bacterial toxins emerged in cell biology as paradigm shifting molecules that enabled scientists to not only study them from the side of bacterial infection but also from the side of the mammalian host. Their selectivity, potency, and versatility made them exquisite tools for uncovering much of our current understanding of membrane trafficking mechanisms. Here, we will follow the steps that lead toxins until their intracellular targets, highlighting how specific events helped us comprehend membrane trafficking and establish the fundamentals of various cellular organelles and processes. Bacterial toxins will continue to guide us in answering crucial questions in cellular biology while also acting as probes for new technologies and applications.  相似文献   

11.
The plant NHX gene family encodes Na + /H + antiporters which are crucial for salt tolerance, potassium homeostasis and cellular pH regulation. Understanding the role of NHX antiporters in membrane trafficking is becoming an increasingly interesting subject of study. Membrane trafficking is a central cellular process during which proteins, lipids and polysaccharides are continuously exchanged among membrane compartments. Yeast ScNhx1p, a prevacuole/ vacuolar Na + /H + antiporter, plays an important role in regulating pH to control trafficking out of the endosome. Evidence begins to accumulate that plant NHX antiporters might function in regulating membrane trafficking in plants.  相似文献   

12.
In clathrin-mediated endocytosis, a principal membrane trafficking route of all eukaryotic cells, forces are applied to invaginate the plasma membrane and form endocytic vesicles. These forces are provided by specific endocytic proteins and the polymerizing actin cytoskeleton. One of the best-studied endocytic systems is endocytosis in yeast, known for its simplicity, experimental amenability, and overall similarity to human endocytosis. Importantly, the yeast endocytic protein machinery generates and transmits tremendous force to bend the plasma membrane, making this system beneficial for mechanistic studies of cellular force-driven membrane reshaping. This review summarizes important protein players, molecular functions, applied forces, and open questions and perspectives of this robust, actin-powered membrane-remodeling protein machine.  相似文献   

13.
Epidermal growth factor (EGF) receptor (EGFR) signalling regulates diverse cellular functions, promoting cell proliferation, differentiation, migration, cell growth and survival. EGFR signalling is critical during embryogenesis, in particular in epithelial development, and disruption of the EGFR gene results in epithelial immaturity and perinatal death. EGFR signalling also functions during wound healing responses through accelerating wound re-epithelialisation, inducing cell migration, proliferation and angiogenesis. Upregulation of EGFR signalling is often observed in carcinomas and has been shown to promote uncontrolled cell proliferation and metastasis. Therefore aberrant EGFR signalling is a common target for anticancer therapies. Various reports indicate that EGFR signalling primarily occurs at the plasma membrane and EGFR degradation following endocytosis greatly attenuates signalling. Other studies argue that EGFR internalisation is essential for complete activation of downstream signalling cascades and that endosomes can serve as signalling platforms. The aim of this review is to discuss current understanding of intersection between EGFR signalling and trafficking.  相似文献   

14.
Abstract. A review is given of the organization and properties of thylakoid membrane proteins and lipids as a basis for understanding the factors which regulate the light reactions of photosynthesis. Particular emphasis is placed on the lateral organization of the major intrinsic multipeptide complexes and on the importance of diffusional processes in controlling the kinetics of electron transport and the distribution of light energy between photosystems 1 and 2.  相似文献   

15.
Endocytosis in the African trypanosome, Trypanosoma brucei, is intimately involved in maintaining homeostasis of the cell surface proteome, morphology of the flagellar pocket and has recently been demonstrated as a bona fide drug target. RNAi-mediated knockdown of many factors required for endocytic transport, including several small GTPases, the major coat protein clathrin and a clathrin-associated receptor, epsinR, results in rapid cell death in vitro. Rapid loss of viability in vitro precludes meaningful investigation by RNAi of the roles of trypanosome endocytosis in vivo. Here we have sought to address this issue using strategies designed to produce milder effects on the endocytic system than complete functional ablation. We created a trypanosome clathrin heavy chain hemizygote and several lines expressing mutant forms of Rab5 and Rab11, described previously. All are viable in in vitro culture, with negligible impact to proliferative rates or cell cycle. Clathrin hemizygotes express clathrin heavy chain at ∼50% of wild type levels, but despite this demonstrate no defect to growth in mice, while none of the Rab5 mutants affected proliferation in vivo, despite clear evidence for effects on endocytosis. By contrast we find that expressing a dominantly active Rab11 mutant led to compromised growth in mice. These data indicate that trypanosomes likely tolerate the effects of partly decreased clathrin expression and alterations in early endocytosis, but are more sensitive to alterations in the recycling arm of the pathway.  相似文献   

16.
FYVE domains are membrane targeting domains that are found in proteins involved in endosomal trafficking and signal transduction pathways. Most FYVE domains bind specifically to phosphatidylinositol 3-phosphate (PI(3)P), a lipid that resides mainly in endosomal membranes. Though the specific interactions between FYVE domains and the headgroup of PI(3)P have been well characterized, principally through structural studies, the available experimental structures suggest several different models for FYVE/membrane association. Thus, the manner in which FYVE domains adsorb to the membrane surface remains to be elucidated. Towards this end, recent experiments have shown that FYVE domains bind PI(3)P in the context of phospholipid bilayers and that hydrophobic residues on a conserved loop are able to penetrate the membrane interface in a PI(3)P-dependent manner.Here, the finite difference Poisson-Boltzmann (FDPB) method has been used to calculate the energetic interactions of FYVE domains with phospholipid membranes. Based on the computational analysis, it is found that (1) recruitment to membranes is facilitated by non-specific electrostatic interactions that occur between basic residues on the domains and acidic phospholipids in the membrane, (2) the energetic analysis can quantitatively differentiate among the modes of membrane association proposed by the experimentally determined structures, (3) FDPB calculations predict energetically feasible models for the membrane-associated states of FYVE domains, (4) these models are consistent with the observation that conserved hydrophobic residues insert into the membrane interface, and (5) the calculations provide a molecular model for the hydrophobic partitioning: binding of PI(3)P significantly neutralizes positive potential in the region of the hydrophobic residues, which acts as an "electrostatic switch" by reducing the energetic barrier for membrane penetration. Finally, the computational results are extended to FYVE domains of unknown structure through the construction of high quality homology models for human FYVE sequences.  相似文献   

17.
18.
Although most non-human primates, except the chimpanzee and the gibbonin vivo are not infectible by HIV-1, lymphocytes of several of these species can be infected by HIV-1in vitro.In order to investigate whether thein vitro infectibility of primate lymphocytes might be attributed to plasma membrane adaptation processes or to serum factors, we compared HIV-1 infectibility of cultivated peripheral blood lymphocytes of macaques and of baboons on day one and on day ten of cultivation. These data were correlated to plasma membrane lipid composition and membrane fluidity.We found a correlation between increased HIV-1in vitro infectibility and changes in plasma membrane lipid composition resulting in decreased membrane fluidity of cultured primate lymphocytes.  相似文献   

19.
The pathogenic mechanism of prion diseases remains unknown. We recently reported that prion infection disturbs post-Golgi trafficking of certain types of membrane proteins to the cell surface, resulting in reduced surface expression of membrane proteins and abrogating the signal from the proteins. The surface expression of the membrane proteins was reduced in the brains of mice inoculated with prions, well before abnormal symptoms became evident. Prions or pathogenic prion proteins were mainly detected in endosomal compartments, being particularly abundant in recycling endosomes. Some newly synthesized membrane proteins are delivered to the surface from the Golgi apparatus through recycling endosomes, and some endocytosed membrane proteins are delivered back to the surface through recycling endosomes. These results suggest that prions might cause neuronal dysfunctions and cell loss by disturbing post-Golgi trafficking of membrane proteins via accumulation in recycling endosomes. Interestingly, it was recently shown that delivery of a calcium channel protein to the cell surface was impaired and its function was abrogated in a mouse model of hereditary prion disease. Taken together, these results suggest that impaired delivery of membrane proteins to the cell surface is a common pathogenic event in acquired and hereditary prion diseases.  相似文献   

20.
The human anion exchanger AE1 (Band 3) is an abundant glycoprotein localized in plasma membrane of red cells and is responsible for the electro-neutral exchange of chloride for bicarbonate. In order to determine the role of the carboxyl-terminal tail of AE1 in its expression, function and trafficking to the plasma membrane, we generated a series of five constructs encoding truncation mutants missing the last 5 (Δ5), 11 (Δ11), 15 (Δ15), 20 (Δ20) or 35 (Δ35) amino-acids. In transiently transfected HEK 293 cells, immunoblotting of whole cell extracts showed that all the proteins were expressed at the same level as full-length AE1, except Δ20 and particularly Δ35, which showed a reduced expression. Furthermore, the last 15 amino-acids were not required for AE1 folding in the membrane, since Δ5, Δ11 and Δ15 were able to bind to an inhibitor affinity matrix, while Δ20 and Δ35 exhibited poor binding. Immunofluorescence and deglycosylation results showed that Δ15 and Δ11 were retained intracellularly, whereas a lower amount of Δ5 compared with WT trafficked to the plasma membrane. These results indicate that an intact C-terminal tail of human AE1 is important for efficient AE1 trafficking to the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号