首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monocyte emigration into areas of inflammation is initiated by monocyte adherence to the microvascular endothelium which may be induced by the local production of chemotactic factors at the inflammatory site. However, it is not clear whether such stimuli act on the monocyte and/or the endothelial cell to promote this effect. Accordingly, the effect of the chemotactic peptides C5a des arg and formyl-methionyl-leucyl-phenylalanine (FMLP) on human monocyte adherence to human microvascular endothelial cell monolayers was investigated in vitro. Monocytes (92 to 98% pure) were isolated by discontinuous plasma-Percoll density gradients and cell elutriation, methods designed to minimize monocyte exposure to endotoxin. Mean spontaneous (unstimulated) adherence of 111Indium-tropolonate-radiolabeled monocytes to microvascular endothelial cell monolayers was 19.7% +/- 1.3. Monocyte adherence to microvascular endothelial cell monolayers was stimulated in a dose-response fashion in the presence of C5a des arg or FMLP to a maximum mean adherence of 47.2% +/- 2.9 or 43.8% +/- 2.2, respectively. C5a des arg or FMLP stimulated monocytes to adhere to monolayers of human vascular smooth muscle cells, human dermal fibroblasts, or serum-coated plastic wells in a comparable fashion as to endothelial cells. The simultaneous presence of both chemotactic peptides C5a des arg and FMLP in the assay system stimulated monocyte adherence to the same degree as either stimulus alone. This finding suggested that those monocytes stimulated to adhere by C5a des arg were the same subpopulation responding to FMLP. Spontaneous monocyte adherence (in the absence of chemotactic peptides) to both endothelial cell monolayers and serum-coated plastic wells was reduced in the presence of plasma, but chemotactic peptides induced a significant, albeit reduced, adhesion of monocytes in this circumstance. The pretreatment of monocytes with either C5a des arg or FMLP prior to the adherence assay induced stimulus-specific desensitization of monocyte adherence. Neither a desensitization nor stimulated monocyte adherence occurred when endothelial cell monolayers or serum-coated plastic wells were pretreated with either of the chemotactic peptides. The fixation of endothelial cell monolayers prior to the adherence assay did not alter the degree of spontaneous, C5a des arg-stimulated, or FMLP-stimulated monocyte adherence. These data suggest that the stimulated adhesion of monocytes to endothelial cells by C5a des arg or FMLP represents primarily an effect of these chemotactic peptides on the monocyte.  相似文献   

2.
Exposure of monocytes to lipopolysaccharide (LPS) during, but not after, adherence purification increased their cytolytic activity in short-term 51Cr-release assays against K562 target cells. In the absence of LPS only a minority of monocytes could be recovered by adherence. With 1 ng/ml to 10 micrograms/ml LPS present during the 1-hr adherence procedure, however, monocytes spread more extensively on serum-coated plastic and glass surfaces and virtually all of the monocytes in a mononuclear leukocyte preparation were recovered in the adherent fraction. While increasing the recovery of monocytes threefold, LPS exposure during adherence also increased monocyte purity as assessed by peroxidase staining, morphology, and indirect immunofluorescence with monoclonal Mo2. The proportion of Leu-11-positive NK cells in the adherent fraction did not change. Depletion of NK cells by treatment with anti-Leu-11b and complement eliminated cytolytic activity from the nonadherent, but not from the adherent, fraction isolated with LPS. Thus, addition of LPS during adherence produced a monocyte preparation with enhanced cytolytic activity not attributable to NK contaminants. To test whether LPS caused production of lymphokines that activate monocytes, we tested supernatants of unseparated mononuclear leukocytes for the capacity to stimulate purified monocytes for cytolysis. Such supernatants stimulated monocytes more effectively than LPS alone. We conclude that LPS stimulates monocytes for cytolysis most effectively during adherence purification because LPS allows the recovery of weakly adherent monocytes with high cytolytic capacity; also, LPS may stimulate production of lymphokines that further augment monocyte cytolytic activity.  相似文献   

3.
4.
Recombinant preparations of human anti-inflammatory cytokines: IL-4, IL-13 and IL-10, inhibited LPS-induced synthesis of TNFalpha and IL-6 in the whole human blood tested in vitro. These cytokines also inhibited LPS-induced IL-6 and TNF mRNA accumulation in isolated human blood monocytes/macrophages. On the other hand, similar concentrations of IL-4 and IL-13 (but not IL-10) enhanced synthesis of IL-6 in cultured human umbilical vein endothelial cells (HUVEC). In human hepatoma HepG2 cells IL-4 and IL-13 (but not IL-10) inhibited IL-6-induced synthesis of haptoglobin. These differential responses to the tested anti-inflammatory cytokines were observed at mRNA and protein levels and may reflect cell specificities in signalling pathways and gene expression. When HUVEC and HepG2 cells were cultured together and stimulated with LPS the addition of IL-4 or IL-13 resulted in the reduction of LPS-induced and IL-6-mediated haptoglobin synthesis. Thus in co-culture the inhibitory effects of IL-4 or IL-13 on HepG2 cells prevail over stimulation of IL-6 synthesis in HUVEC.  相似文献   

5.
Interleukin 1 (IL-1) alters several potentially pathogenic endothelial cell (EC) functions. The authors report here that recombinant human IL-1 (rIL-1) alpha (0.1 to 10 ng/ml) or IL-1-beta (1 to 100 ng/ml) induce concentration- and time-dependent increases in IL-1-beta mRNA levels in EC derived from adult human saphenous vein. rIL-1 induced IL-1-alpha mRNA only in EC treated concomitantly with cycloheximide (2 micrograms/ml). IL-1-beta mRNA production began within 1 hr of exposure to rIL-1, peaked after 24 hr, and declined thereafter. Actinomycin D prevented the appearance of IL-1 mRNA in rIL-1-treated EC. rIL-1 also induced the release of biologically active IL-1 from EC, which was inhibited by cycloheximide (1 microgram/ml). When compared on the basis of their activity in the thymocyte costimulation assay, rIL-1-alpha and rIL-1-beta were equipotent as inducers of IL-1 production by EC. EC stimulated with rIL-1 produced prostaglandin E2, which inhibits IL-1 production by other cell types and also decreases the responsiveness of thymocytes to IL-1. When EC were exposed to rIL-1 in the presence of indomethacin (1 microgram/ml), which blocked prostaglandin E2 production, greater amounts of rIL-1-induced IL-1 release were detected, although the inhibitor did not affect IL-1-beta mRNA levels. IL-1-induced IL-1 production was unlikely to be caused by endotoxin contamination of tissue culture media or IL-1 preparations, because the lipopolysaccharide (LPS) antagonist polymyxin B (10 micrograms/ml) blocked LPS-induced IL-1 production by EC but did not affect IL-1 release in response to rIL-1-beta (100 ng/ml). The IL-1-inducing property of rIL-1-beta was heat-labile, whereas heated LPS stimulated EC IL-1 production. The source of IL-1 in our cultures was not monocyte/macrophages, as treatment of EC with monoclonal antibody to the monocyte antigen Mo2 under conditions that lysed adherent peripheral blood monocytes did not affect production of IL-1 by EC in response to LPS (1 microgram/ml) or rIL-1-beta (100 ng/ml). IL-1 elicits a coordinated program of altered endothelial function that increases adhesiveness for leukocytes and coagulability. IL-1-induced IL-1 gene expression in human adult EC could thus provide a positive feedback mechanism in the pathogenesis of vascular disease including atherosclerosis, vasculitis, and allograft rejection.  相似文献   

6.
Exposure of mononuclear phagocytes to bacterial lipopolysaccharide (LPS), phorbol myristate acetate (PMA), or muramyl dipeptide (MDP) is known to stimulate a variety of cellular activities that include increases in phagocytosis, oxidative metabolism, synthesis and secretion of monokines, and cytotoxicity of microbes and tumor cells. We now report that culture of human peripheral blood monocytes in medium containing LPS, phorbol compounds, or MDP also results in the acquired expression of a plasma membrane antigen. Mo3e, as identified by a murine monoclonal antibody. Mo3e is barely detectable (by immunofluorescence flow cytometry) on freshly isolated monocytes, but is expressed in high antigen density after exposure of cells to E. coli, Salmonella minnesota, or Serratia marcescens LPS (at concentrations exceeding 0.1 ng/ml), PMA (and other biologically active phorbol compounds) (0.5 to 1 X 10(-8) M), or MDP (0.01 to 1 X 10(-6) M). Mo3e expression stimulated by LPS is prevented by pretreatment of LPS with polymyxin B, suggesting that the lipid A portion of LPS is responsible for Mo3e induction (polymyxin B has no effect on Mo3e expression stimulated by PMA or MDP). Culture of monocytes in medium containing protein synthesis inhibitors (or at 4 degrees C) blocks the acquisition of Mo3e. Recombinant IFN-gamma, which is also known to "activate" mononuclear phagocytes, does not stimulate Mo3e expression, although both LPS and IFN induce enhanced expression of monocyte Ia antigen. Analogous to their stimulatory effect on monocytes, LPS and PMA induce Mo3e expression by the human monocytic cell line, U-937. On the basis of these observations, Mo3e may represent an immunologic marker for monocyte activation stimulated in vitro by LPS, PMA (and related compounds), and MDP.  相似文献   

7.
8.
9.
Margination and activation of monocytes within the pulmonary microcirculation contribute substantially to the development of acute lung injury in mice. The enhanced LPS-induced TNF expression exhibited by Gr-1(high) compared with Gr-1(low) monocytes within the lung microvasculature suggests differential roles for these subsets. We investigated the mechanisms responsible for such heterogeneity of lung-marginated monocyte proinflammatory response using a combined in vitro and in vivo approach. The monocyte subset inflammatory response was studied in vitro in mouse peripheral blood mononuclear cell-lung endothelial cell coculture and in vivo in a two-hit model of intravenous LPS-induced monocyte margination and lung inflammation in mice, by flow cytometry-based quantification of proinflammatory genes and intracellular phospho-kinases. With LPS stimulation in vitro, TNF expression was consistently higher in Gr-1(high) than Gr-1(low) monocytes, markedly enhanced by coculture with endothelial cells, and abrogated by p38 MAPK inhibitors. Expression of IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) was only detectable under coculture conditions, was substantially higher in Gr-1(high) monocytes, and was attenuated by p38 inhibition. Consistent with these differential responses, phosphorylation of p38 and its substrate MAPK-activated protein kinase 2 (MK2) was significantly higher in the Gr-1(high) subset. In vivo, p38 inhibitor treatment significantly attenuated LPS-induced TNF expression in "lung-marginated" Gr-1(high) monocytes. LPS-induced p38/MK2 phosphorylation was higher in lung-marginated Gr-1(high) than Gr-1(low) monocytes and neutrophils, mirroring TNF expression. These results indicate that the p38/MK2 pathway is a critical determinant of elevated Gr-1(high) subset responsiveness within the lung microvasculature, producing a coordinated proinflammatory response that places Gr-1(high) monocytes as key orchestrators of pulmonary microvascular inflammation and injury.  相似文献   

10.
11.
Monocyte-endothelium interaction is a fundamental process in many acute and chronic inflammatory diseases. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are fish oil-derived alternative (omega-3) precursor fatty acids implicated in the suppression of inflammatory events. We investigated their influence on rolling and adhesion of monocytes to human umbilical vein endothelial cells (HUVEC) under laminar flow conditions in vitro. Exposure of HUVEC to tumor necrosis factor (TNF-alpha) strongly increased 1) surface expression of intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), and E-selectin, 2) platelet-activating factor (PAF) synthesis as assessed by thrombin challenge, and 3) rate of rolling and adhesion of monocytes. Preincubation of HUVEC with EPA or DHA markedly suppressed PAF synthesis, monocyte rolling, and adherence, whereas expression of endothelial adhesion molecules was unchanged. Also, PAF receptor antagonists markedly suppressed the adhesion rate of monocytes, and EPA or DHA revealed no additional inhibitory capacity. In contrast, arachidonic acid partially reversed the effect of the antagonist. We conclude that omega-3 fatty acids suppress rolling and adherence of monocytes on activated endothelial cells in vitro by affecting endothelial PAF generation.  相似文献   

12.
We studied neutrophil responses to LPS using three methodologic refinements: Teflon bags or serum-coated glass tubes that did not directly trigger neutrophils, LPS-free cytochrome c to measure O2- release, and heat-inactivated serum to inhibit inactivation of LPS by neutrophils. Neutrophils incubated in uncoated glass or plastic tubes adhered to the glass and released O2-, but were not primed for enhanced release of O2- in response to triggering by FMLP. Triggering by the glass or plastic surface did not occur if the neutrophils were stirred to prevent adherence. Adherence to glass or plastic and O2- release were not affected by a mAb (IB4) directed against the beta-chain of the leukocyte adhesion family of surface glycoproteins (CD11/CD18). Neutrophils incubated in glass or plastic did not show enhanced expression of alkaline phosphatase on their surface. When neutrophils were incubated in serum-coated glass tubes or in Teflon bags, there was no O2- release. However, adherence, expression of alkaline phosphatase, and release of O2- were triggered by adding 1 ng/ml LPS plus 1% serum, but not by either LPS or serum alone. In the presence of LPS and serum, O2- release was much higher when the cells were unstirred (adherent) rather than stirred. However, both unstirred and stirred cells expressed a similar elevated level of alkaline phosphatase. LPS-triggered O2- release and adherence were inhibited by antibody IB4. In contrast, priming by LPS for enhanced FMLP-triggered O2- release was greater in stirred cells than in unstirred cells. The antibody enhanced priming of unstirred neutrophils. These results suggested that uncoated glass or plastic triggered O2- release without involvement of leukocyte adhesion glycoproteins. However, neutrophils incubated with LPS and serum expressed alkaline phosphatase and IB4-inhibitable adherence glycoproteins that allowed neutrophils to interact with serum-coated glass or Teflon to trigger O2- release. Priming by LPS for enhanced response to FMLP was suppressed in adherent neutrophils, and this suppression was partly released by IB4. Thus, triggering and priming were reciprocally regulated by neutrophil glycoproteins interacting with surfaces.  相似文献   

13.
We previously demonstrated that IL-10 alone does not stimulate growth and differentiation of human monocytes, but enhances those of monocytes stimulated with M-CSF. We studied here the effect of IL-10 on human monocytes stimulated with GM-CSF. Monocytes stimulated with GM-CSF alone survived and developed into macrophages. Monocytes cultured with GM-CSF plus IL-10, however, died through apoptosis. IL-10 decreased expression of bcl-2, bcl-x(L), and mcl-1- but not bax mRNA in monocytes stimulated with GM-CSF. IL-10 did not change the expression of mRNA of both GM-CSFR alpha-chain and beta-chain, but inhibited tyrosine phosphorylation of STAT5 and extracellular signal-regulated kinases 1 and 2 in the monocytes. The inhibitory effect of IL-10 was restricted to treatment 48 h after stimulation with GM-CSF. Addition of IL-10 after that time induced neither apoptosis nor a decrease in expression of bcl-2, bcl-x(L), and mcl-1 mRNA. IL-10, however, inhibited LPS-induced TNF-alpha production even in these cells, indicating that the cells still possessed responsiveness to IL-10. Monocytes pretreated for >48 h with GM-CSF became resistant to GM-CSF withdrawal, and the cells could survive without GM-CSF. These results indicate that IL-10 selectively inhibits GM-CSF-dependent monocyte survival by inhibiting the signaling events induced by GM-CSF, but the timing of addition of IL-10 is critical, and IL-10 had to be added within 48 h after stimulation with GM-CSF to achieve the inhibitory effect. These results taken together with our previous results indicate that IL-10 plays a pivotal role in monocyte survival and development into macrophages in concert with M-CSF and GM-CSF.  相似文献   

14.
Cigarette smoking is ranked among the leading risk factors in the etiology of atherosclerotic vascular disease. The mechanisms, however, that link cigarette smoking to increased incidence of atherosclerosis are not understood. The adherence of circulating monocytes to the endothelium, migration into the subendothelium, and subsequent formation of foam cells are principal initial events in the development of atherosclerosis. We therefore determined whether cigarette smoke caused increased adherence of monocytes to endothelial cells and the cellular mechanism of this increased adherence. Cigrette smoke condensate (CSC), the particulate fraction of cigarette smoke derived from 2R1 standard research cigarettes, at a concentration of 25–30 μg/ml (average yield of CSC is 26.1 mg/cigarette), augmented (70–90%) basal adherence of human peripheral blood monocytes to a cultured monolayer of endothelial cells derived from bovine aorta (BAEC) and human umbilical vein (HUVEC). There was a concomitant increase in the expression of CD11b ligand on the surface of monocytes as determined by flow cytometry, utilizing FITC conjugated Mab MO-1 (CD11b). However, nicotine (1–15 μg/ml) and cadmium sulfate (10 μg/ml), constituents of CSC, individually or in combination had no effect either on CD11b expression or adherence of monocytes to endothelial cells. Treatment of HUVEC with CSC for 60 min also resulted in an increased expression of ICAM-1 and ELAM-1 as determined by mean fluorescence intensity of ICAM-1 and ELAM-1 labeled cells in flow cytometric analysis. The CSC induced expression of CD11b in monocytes was optimal at 25–30 min and was inhibited by protein kinase C inhibitors, staurosporine and H-7, and also by baicalein, a lipoxygenase inhibitor. Similarly, CSC induced ICAM-1 and ELAM-1 expression in HUVEC was inhibited by protein kinase C inhibitors. CSC stimulated the adherence of human monocytes but not the monocytic cell lines HL-60, U937, and THP-1 to endothelial cells. The CSC stimulated adherence of human monocytes was inhibited (80%) by MAb to CD11b and 50% by Mab to ICAM-1 and ELAM-1. These results suggest that cigarettee smoke particulate constituents activate protein kinase C, leading to increased surface expression of adhesive ligand CD11b on peripheral blood monocytes and counter receptor(s) ICAM-1 and ELAM-1 in endothelial cells. The expression of ligand and counter receptor leads to potentiated adherence of monocytes to endothelial cells, an initial event in the pathogenesis of cigarette smoke induced inflammatory response in the vessel wall. © 1994 Wiley-Liss, Inc.  相似文献   

15.
Adherence of monocytes to endothelial cells or extracellular matrices is likely to play a critical role in triggering monocyte activation in extravascular sites of infection, chronic inflammatory disorders, tissue damage and neoplastic growth. We have constructed a cDNA library from monocytes adhered for 30 min on plastic and have screened it by differential hybridization for mRNA rapidly induced by adherence. Two of the cDNA isolated have been identified as IL-1 beta and superoxide dismutase. Sequence data from three other adherence specific clones demonstrates the presence of ATTTA mRNA instability sequences in their 3' untranslated regions signifying inflammation-associated genes. The deduced amino acid sequences indicate the presence of open reading frames with sequence homologies to a family of host defense cytokines, one of them being identified as IL-8. Of the 14 clones initially identified, 4 have been analyzed for induction of mRNA expression. Although 3 of the 4 clones were equally induced by PMA and LPS under nonadherent conditions, all 4 cDNA showed distinct patterns of induction with adherence to extracellular matrix components or endothelial cells. The deduced amino acid sequence homologies indicate that we have isolated cDNA that code for three unique gene products. These cDNA belong to a gene family of early host defense cytokines involved in inflammation and cell growth, but which are differentially regulated by adherence to different surfaces.  相似文献   

16.
We present evidence for a novel TLR2 function in transmodulating the adhesive activities of human monocytes in response to the fimbriae of Porphyromonas gingivalis, a pathogen implicated in chronic periodontitis and atherosclerosis. Monocyte recruitment into the subendothelium is a crucial step in atherosclerosis, and we investigated the role of P. gingivalis fimbriae in stimulating monocyte adhesion to endothelial cells and transendothelial migration. Fimbriae induced CD11b/CD18-dependent adhesion of human monocytes or mouse macrophages to endothelial receptor ICAM-1; these activities were inhibited by TLR2 blockade or deficiency or by pharmacological inhibitors of PI3K. Moreover, this inducible adhesive activity was sensitive to the action of Clostridium difficile toxin B, but was not affected by Clostridium botulinum C3 exoenzyme, pertussis toxin, or cholera toxin. Accordingly, we subsequently showed through the use of dominant negative signaling mutants of small GTPases, that Rac1 mediates the ability of fimbria-stimulated monocytes to bind ICAM-1. A dominant negative mutant of Rac1 also inhibited the lipid kinase activity of PI3K suggesting that Rac1 acts upstream of PI3K in this proadhesive pathway. Furthermore, fimbriae stimulated monocyte adhesion to HUVEC and transmigration across HUVEC monolayers; both activities required TLR2 and Rac1 signaling and were dependent upon ICAM-1 and the high-affinity state of CD11b/CD18. P. gingivalis-stimulated monocytes displayed enhanced transendothelial migration compared with monocytes stimulated with nonfimbriated isogenic mutants. Thus, P. gingivalis fimbriae activate a novel proadhesive pathway in human monocytes, involving TLR2, Rac1, PI3K, and CD11b/CD18, which may constitute a mechanistic basis linking P. gingivalis to inflammatory atherosclerotic processes.  相似文献   

17.
Monkey (Macaca fuscata) mononuclear leukocytes were stimulated to produce thromboplastin (tissue factor) upon exposure to lipopolysaccharide, LPS. The stimulation was dose-related in the concentration range of 10(-5) to 10(-1) micrograms/ml of LPS. Lipid A portion of the LPS molecule was essential to induce the leukocyte ability for tissue factor generation. Thus, a lipid-lipid interaction between LPS and the cells is a plausible trigger for eliciting the ability. Approximately 50% of the tissue factor thus produced appeared to be located on the cell surface, at which the coagulation cascade is probably initiated via the activation of factor VII. Among monkey mononuclear cell populations, monocytes were responsible for LPS-induced tissue factor production. Lymphocytes amplified the basal ability of monocytes to produce the factor by two-fold at physiological lymphocyte-monocyte ratios of 8:1 to 10:1. This indicates a complementary effect of lymphocytes upon the LPS-mediated monocyte ability. The medium supernatant from LPS-stimulated lymphocytes affected the monocyte competence while the stimulated lymphocytes did not. This result suggests that a soluble product of lymphocytes, i.e., lymphokine-like mediator, but not the cellular entity, participates in LPS-induced tissue factor production of monocytes.  相似文献   

18.
Biopsies from carcinoma tissue and benign control mucosa from head and neck squamous cell carcinoma patients were used to establish fragment (F)-spheroids in vitro. We have previously shown that autologous monocytes co-cultured with F-spheroids in vitro secrete interleukin (IL)-6 upon 24h in co-culture. Presently, the aim was to study the mechanisms of this monocyte secretion. Paraformaldehyde (0.1% for 2min) or actinomycin-D (1 microg/ml for 24h) pre-treatment of the F-spheroids abolished the monocyte IL-6 co-culture response. Addition of glucose (100mM) or mannose (100mM), and to some extent galactose (100mM), but not fructose (100mM) to the co-cultures, partly inhibited the monocyte IL-6 co-culture response, but such addition did not inhibit the in vitro monocyte lipopolysaccharide (LPS)-generated IL-6 secretion. When mannose was added to the co-cultures, monocyte IL-6 mRNA expression was eradicated in malignant co-cultures and reduced to a low level in benign co-cultures. Addition of mouse anti-human beta(1)-integrin (anti-CD29) antibody (2 microg/ml) diminished the IL-6 co-culture response but not the monocyte LPS-generated IL-6 response. In conclusion, the monocyte IL-6 co-culture response is dependent on live spheroids and to some extent on direct contact with the F-spheroids, possibly via lectin-like receptor(s), the mannose receptor and beta(1)-integrin.  相似文献   

19.
20.
Monocyte-endothelium interaction is key to many acute and chronic inflammatory diseases. We have investigated the factors regulating monocyte attachment to cytokine-activated human umbilical vein endothelial cells (HUVEC) and the modulatory effect of the polyunsaturated fatty acid (PUFA), conjugated linoleic acid (CLA) in this process. Both TNF-alpha and IL-1beta induced HUVEC platelet-activating factor (PAF) production and PAF was required for subsequent firm THP-1 monocyte adhesion since it was inhibited by both PAF receptor antagonists (BN-52021 or CV-6209) and a PAF synthesis inhibitor (sanguinarine). CLA inhibited the binding of both THP-1 and isolated human peripheral blood monocytes to HUVEC by up to 40% with the CLA t10,c12 isomer suppressing adhesion dose-dependently. Investigation into the mechanism involved demonstrated that with IL-1beta, VCAM-1 and ICAM-1 levels and pro-inflammatory cytokine expression were largely unaffected by CLA. Through the use of PAF receptor antagonists and PAF synthesis inhibitors, CLA was shown to inhibit cytokine-induced binding by suppressing PAF production. Direct assay of PAF levels confirmed this result. We conclude that endothelial-generated PAF plays a central role in cytokine-induced monocyte adherence to endothelium and that the anti-inflammatory action of PUFAs such as CLA in suppressing monocyte-endothelial interaction is mediated through attenuation of pro-inflammatory phospholipids such as PAF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号